ترغب بنشر مسار تعليمي؟ اضغط هنا

Enhanced frequency up-conversion in Rb vapor

214   0   0.0 ( 0 )
 نشر من قبل Aidan Arnold
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate highly efficient generation of coherent 420nm light via up-conversion of near-infrared lasers in a hot rubidium vapor cell. By optimizing pump polarizations and frequencies we achieve a single-pass conversion efficiency of 260% per Watt, significantly higher than in previous experiments. A full exploration of the coherent light generation and fluorescence as a function of both pump frequencies reveals that coherent blue light is generated close to 85Rb two-photon resonances, as predicted by theory, but at high vapor pressure is suppressed in spectral regions that do not support phase matching or exhibit single-photon Kerr refraction. Favorable scaling of our current 1mW blue beam power with additional pump power is predicted.



قيم البحث

اقرأ أيضاً

Nonlinear magneto-optical (NMO) resonances occurring for near-zero magnetic field are studied in Rb vapor using light-noise spectroscopy. With a balanced detection polarimeter, we observe high contrast variations of the noise power (at fixed analysis frequency) carried by diode laser light resonant with the 5S$_{1/2}(F=2) to 5$P$_{1/2}(F=1) $ transition of $^{87}$Rb and transmitted through a rubidium vapor cell, as a function of magnetic field $B$. A symmetric resonance doublet of anti-correlated noise is observed for orthogonal polarizations around $B=0 $ as a manifestation of ground state coherence. We also observe sideband noise resonances when the magnetic field produces an atomic Larmor precession at a frequency corresponding to one half of the analysis frequency. The resonances on the light fluctuations are the consequence of phase to amplitude noise conversion owing to nonlinear coherence effects in the response of the atomic medium to the fluctuating field. A theoretical model (derived from linearized Bloch equations) is presented that reproduces the main qualitative features of the experimental signals under simple assumptions.
We optically excite $^{85}$Rb atoms in a heated vapor cell to a low-lying Rydberg state 10D$_{5/2}$ and observe directional terahertz (THz) beams at 3.3 THz and 7.8 THz. These THz fields are generated by amplified spontaneous emission from the 10D$_{ 5/2}$ state to the 11P$_{3/2}$ and 8F$_{7/2}$ states, respectively. In addition, we observe ultraviolet (UV) light produced by four-wave mixing of optical pump lasers and the 3.3 THz field. We characterize the generated THz power over the detuning and power of pump lasers, and identify experimental conditions favoring THz and UV generation, respectively. Our scheme paves a new pathway towards generating high-power narrow-band THz radiation.
195 - G. Walker , A. S. Arnold , 2012
We report the transfer of phase structure, and in particular of orbital angular momentum, from near-infrared pump light to blue light generated in a four-wave-mixing process in 85Rb vapour. The intensity and phase profile of the two pump lasers at 78 0nm and 776nm, shaped by a spatial light modulator, influences the phase and intensity profile of light at 420nm which is generated in a subsequent coherent cascade. In particular we oberve that the phase profile associated with orbital angular momentum is transferred entirely from the pump light to the blue. Pumping with more complicated light profiles results in the excitation of spatial modes in the blue that depend strongly on phase-matching, thus demonstrating the parametric nature of the mode transfer. These results have implications on the inscription and storage of phase-information in atomic gases.
219 - S. B. Weiss , M. Bhattacharya , 2003
We report the calculation of the interspecies scattering length for the sodium-rubidium (Na-Rb) system. We present improved hybrid potentials for the singlet $X^1Sigma^+$ and triplet $a^3Sigma^+$ ground states of the NaRb molecule, and calculate the singlet and triplet scattering lengths $a_{s}$ and $a_{t}$ for the isotopomers $^{23}$Na$^{87}$Rb and $^{23}$Na$^{85}$Rb. Using these values, we assess the prospects for producing a stable two-species Bose-Einstein condensate in the Na-Rb system.
Traditionally, measuring the center-of-mass (c.m.) velocity of an atomic ensemble relies on measuring the Doppler shift of the absorption spectrum of single atoms in the ensemble. Mapping out the velocity distribution of the ensemble is indispensable when determining the c.m. velocity using this technique. As a result, highly sensitive measurements require preparation of an ensemble with a narrow Doppler width. Here, we use a dispersive measurement of light passing through a moving room temperature atomic vapor cell to determine the velocity of the cell in a single shot with a short-term sensitivity of 5.5 $mu$m s$^{-1}$ Hz$^{-1/2}$. The dispersion of the medium is enhanced by creating quantum interference through an auxiliary transition for the probe light under electromagnetically induced transparency condition. In contrast to measurement of single atoms, this method is based on the collective motion of atoms and can sense the c.m. velocity of an ensemble without knowing its velocity distribution. Our results improve the previous measurements by 3 orders of magnitude and can be used to design a compact motional sensor based on thermal atoms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا