ترغب بنشر مسار تعليمي؟ اضغط هنا

On the 10-micron silicate feature in Active Galactic Nuclei

123   0   0.0 ( 0 )
 نشر من قبل Robert Nikutta
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The 10-micron silicate feature observed with Spitzer in active galactic nuclei (AGN) reveals some puzzling behavior. It (1) has been detected in emission in type 2 sources, (2) shows broad, flat-topped emission peaks shifted toward long wavelengths in several type 1 sources, and (3) is not seen in deep absorption in any source observed so far. We solve all three puzzles with our clumpy dust radiative transfer formalism. (1) We present the spectral energy distribution (SED) of SST1721+6012, the first type 2 quasar observed to show a clear 10-mic silicate feature in emission. We constructed a large database of clumpy torus models and performed extensive fitting of the observed SED, constraining several of the torus parameters. We find that the source bolometric luminosity is ~3*10^12 L_sun. Our modeling suggests that <35% of objects with tori sharing characteristics and geometry similar to the best fit would have their central engines obscured. This relatively low obscuration probability can explain the clear appearance of the 10-mic emission feature in SST1721+6012 together with its rarity among other QSO2. (2) We also fitted the SED of PG1211+143, one of the first type 1 QSOs with a 10-mic silicate feature in emission. Among similar sources, this QSO appears to display an unusually broadened feature whose peak is shifted toward longer wavelengths. Although this led to suggestions of non-standard dust chemistry in these sources, our analysis fits such SEDs with standard galactic dust; the apparent peak shifts arise from radiative transfer effects. (3) We find that the distribution of silicate feature strengths among clumpy torus models closely resembles the observed distribution, and the feature never occurs deeply absorbed. (abridged)



قيم البحث

اقرأ أيضاً

Young stars are formed within dusty discs. The grains in the disc are originally of the same size as interstellar dust. Models predict that these grains will grow in size through coagulation. Observations of the silicate features at micron wavelength s are consistent with growth to micron sizes whereas the slope of the SED at longer wavelengths traces growth up to mm sizes. We here look for a correlation between these two grain growth indicators. A large sample of T-Tauri and Herbig-Ae/Be stars was observed with the Spitzer Space Telescope at 5-13 micron; a subsample was observed at mm wavelengths. We complement this subsample with data from the literature to maximise the overlap between micron and mm observations and search for correlations. Synthetic spectra are produced to determine which processes may produce the dust evolution. Dust disc masses in the range <1 to 7 x 10^-4 MSun are obtained. Most sources have a mm spectral slope consistent with grain growth. There is a tentative correlation between the 10-micron silicate feature and the mm slope of the SED. The observed sources seem to be grouped per star-forming region in the micron-vs-mm diagram. The modelling results show that the 10-micron feature becomes flatter and subsequently the mm slope becomes shallower. Grain size distributions shallower than that of the ISM and/or bright central stars are required to explain specific features. Settling of larger grains towards the disc midplane affects the 10-micron feature, but hardly the mm slope. The tentative correlation between the strength of the 10-micron feature and the mm slope suggests that the inner and outer disc evolve simultaneously. Dust with a mass dominated by mm-sized grains is required to explain the shallowest mm slopes. Other processes besides grain growth may also be responsible for the removal of small grains.
We present Spitzer measurements of the aromatic (also known as PAH) features for 35 Seyfert galaxies from the revised Shapley-Ames sample and find that the relative strengths of the features differ significantly from those observed in star-forming ga laxies. Specifically, the features at 6.2, 7.7, and 8.6 micron are suppressed relative to the 11.3 micron feature in Seyferts. Furthermore, we find an anti-correlation between the L(7.7 micron)/L(11.3 micron) ratio and the strength of the rotational H2 (molecular hydrogen) emission, which traces shocked gas. This suggests that shocks suppress the short-wavelength features by modifying the structure of the aromatic molecules or destroying the smallest grains. Most Seyfert nuclei fall on the relationship between aromatic emission and [Ne II] emission for star-forming galaxies, indicating that aromatic-based estimates of the star-formation rate in AGN host galaxies are generally reasonable. For the outliers from this relationship, which have small L(7.7 micron)/L(11.3 micron) ratios and strong H2 emission, the 11.3 micron feature still provides a valid measure of the star-formation rate.
Recent results have suggested that active galactic nuclei (AGN) could provide enough photons to reionise the Universe. We assess the viability of this scenario using a semi-numerical framework for modeling reionisation, to which we add a quasar contr ibution by constructing a Quasar Halo Occupation Distribution (QHOD) based on Giallongo et al. observations. Assuming a constant QHOD, we find that an AGN-only model cannot simultaneously match observations of the optical depth $tau_e$, neutral fraction, and ionising emissivity. Such a model predicts $tau_e$ too low by $sim 2sigma$ relative to Planck constraints, and reionises the Universe at $zlesssim 5$. Arbitrarily increasing the AGN emissivity to match these results yields a strong mismatch with the observed ionising emissivity at $zsim 5$. If we instead assume a redshift-independent AGN luminosity function yielding an emissivity evolution like that assumed in Madau & Haardt model, then we can match $tau_e$ albeit with late reionisation, however such evolution is inconsistent with observations at $zsim 4-6$ and poorly motivated physically. These results arise because AGN are more biased towards massive halos than typical reionising galaxies, resulting in stronger clustering and later formation times. AGN-dominated models produce larger ionising bubbles that are reflected in $simtimes 2$ more 21cm power on all scales. A model with equal parts galaxies and AGN contribution is still (barely) consistent with observations, but could be distinguished using next-generation 21cm experiments HERA and SKA-low. We conclude that, even with recent claims of more faint AGN than previously thought, AGN are highly unlikely to dominate the ionising photon budget for reionisation.
153 - Nelson Padilla PUC 2009
We study the properties of SDSS galaxies with and without AGN detection as a function of the local and global environment measured via the local density, the mass of the galaxy host group (parameterised by the group luminosity) and distance to massiv e clusters. Our results can be divided in two main subjects, the environments of galaxies and their relation to the assembly of their host haloes, and the environments of AGN. (i) For the full SDSS sample, we find indications that the local galaxy density is the most efficient parameter to separate galaxy populations, but we also find that galaxies at fixed local density show some remaining variation of their properties as a function of the distance to the nearest cluster of galaxies (in a range of 0 to 10 cluster virial radii). These differences seem to become less significant if the galaxy samples are additionally constrained to be hosted by groups of similar total luminosity. (ii) In AGN host galaxies, the morphology-density relation is much less noticeable when compared to the behaviour of the full SDSS sample. In order to interpret this result we analyse control samples constructed using galaxies with no detected AGN activity with matching distributions of redshifts, stellar masses, r-band luminosities, g-r colours, concentrations, local densities, host group luminosities, and fractions of central and satellite galaxies. The control samples also show a similar small dependence on the local density indicating an influence from the AGN selection, but their colours are slightly bluer compared to the AGN hosts regardless of local density. Furthermore, even when the local density is held fixed at intermediate or high values, and the distance to the closest cluster of galaxies is allowed to vary, AGN control galaxies away from clusters tend to be bluer than the AGN hosts. (ABRIDGED)
This whitepaper describes how the VLASS could be designed in a manner to allow the identification of candidate dual active galactic nuclei (AGN) at separations <7 kpc. Dual AGN represent a clear marker of two supermassive black holes within an ongoin g merger. A dual AGN survey will provide a wealth of studies in structure growth and gravitational-wave science. Radio wavelengths are ideal for identifying close pairs, as disturbed stellar and gaseous material can obscure their presence in optical and shorter wavelengths. With sufficiently high resolution and sensitivity, a large-scale radio imaging survey like the VLASS will uncover many of these systems and provide the means to broadly study the radio properties of candidate dual systems revealed at other wavelengths. We determine that the ideal survey for our purposes will be at as high a resolution as possible, with significantly more science return in A array at L-band or higher, or B array at C-band or higher. We describe a range of potential survey parameters within this document. Based on the analysis outlined in this whitepaper, our ideal survey would create a catalogue of $gtrsim$100 dual AGN in either: 1) a medium-sensitivity (~1 mJy detection threshold), wide-field (few thousand square degree) survey, or 2) a high-sensitivity (~10 uJy threshold) survey of several hundred square degrees.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا