We explore the potential for the direct detection of light fermionic dark matter in neutrino detectors. We consider the possible observation of the process $bar{f} p to e^+ n$, where $f$ is a dark matter fermion, in a model-independent manner. All operators of dimension six or lower which can contribute to this process are listed, and we place constraints on these operators from decays of $f$ which contain $gamma$ rays or electrons. One operator is found which is sufficiently weakly constrained that it could give observable interactions in neutrino detectors. We find that Super-Kamiokande can probe the new physics scale for this operator up to $O(100{TeV})$.