ﻻ يوجد ملخص باللغة العربية
It is well known that the distribution of simple random walks on $bf{Z}$ conditioned on returning to the origin after $2n$ steps does not depend on $p= P(S_1 = 1)$, the probability of moving to the right. Moreover, conditioned on ${S_{2n}=0}$ the maximal displacement $max_{kleq 2n} |S_k|$ converges in distribution when scaled by $sqrt{n}$ (diffusive scaling). We consider the analogous problem for transient random walks in random environments on $bf{Z}$. We show that under the quenched law $P_omega$ (conditioned on the environment $omega$), the maximal displacement of the random walk when conditioned to return to the origin at time $2n$ is no longer necessarily of the order $sqrt{n}$. If the environment is nestling (both positive and negative local drifts exist) then the maximal displacement conditioned on returning to the origin at time $2n$ is of order $n^{kappa/(kappa+1)}$, where the constant $kappa>0$ depends on the law on environment. On the other hand, if the environment is marginally nestling or non-nestling (only non-negative local drifts) then the maximal displacement conditioned on returning to the origin at time $2n$ is at least $n^{1-varepsilon}$ and at most $n/(ln n)^{2-varepsilon}$ for any $varepsilon>0$. As a consequence of our proofs, we obtain precise rates of decay for $P_omega(X_{2n}=0)$. In particular, for certain non-nestling environments we show that $P_omega(X_{2n}=0) = exp{-Cn -Cn/(ln n)^2 + o(n/(ln n)^2) }$ with explicit constants $C,C>0$.
The integer points (sites) of the real line are marked by the positions of a standard random walk. We say that the set of marked sites is weakly, moderately or strongly sparse depending on whether the jumps of the standard random walk are supported b
We consider branching random walks in $d$-dimensional integer lattice with time-space i.i.d. offspring distributions. This model is known to exhibit a phase transition: If $d ge 3$ and the environment is not too random, then, the total population gro
We study survival of nearest-neighbour branching random walks in random environment (BRWRE) on ${mathbb Z}$. A priori there are three different regimes of survival: global survival, local survival, and strong local survival. We show that local and st
We consider branching random walks in $d$-dimensional integer lattice with time-space i.i.d. offspring distributions. When $d ge 3$ and the fluctuation of the environment is well moderated by the random walk, we prove a central limit theorem for the
We consider random walks in i.i.d. elliptic random environments which are not uniformly elliptic. We introduce a computable condition in dimension $d=2$ and a general condition valid for dimensions $dge 2$ expressed in terms of the exit time from a b