ﻻ يوجد ملخص باللغة العربية
Let $K$ be a field and $S=K[x_1,...,x_n]$. In 1982, Stanley defined what is now called the Stanley depth of an $S$-module $M$, denoted $sdepth(M)$, and conjectured that $depth(M) le sdepth(M)$ for all finitely generated $S$-modules $M$. This conjecture remains open for most cases. However, Herzog, Vladoiu and Zheng recently proposed a method of attack in the case when $M = I / J$ with $J subset I$ being monomial $S$-ideals. Specifically, their method associates $M$ with a partially ordered set. In this paper we take advantage of this association by using combinatorial tools to analyze squarefree Veronese ideals in $S$. In particular, if $I_{n,d}$ is the squarefree Veronese ideal generated by all squarefree monomials of degree $d$, we show that if $1le dle n < 5d+4$, then $sdepth(I_{n,d})= floor{binom{n}{d+1}Big/binom{n}{d}}+d$, and if $dgeq 1$ and $nge 5d+4$, then $d+3le sdepth(I_{n,d}) le floor{binom{n}{d+1}Big/binom{n}{d}}+d$.
We give upper bounds for the Stanley depth of edge ideals of certain k-partite clutters. In particular, we generalize a result of Ishaq about the Stanley depth of the edge ideal of a complete bipartite graph. A result of Pournaki, Seyed Fakhari and Y
Squarefree powers of edge ideals are intimately related to matchings of the underlying graph. In this paper we give bounds for the regularity of squarefree powers of edge ideals, and we consider the question of when such powers are linearly related o
Let $K$ be a field and $S = K[x_1,dots,x_n]$ be a polynomial ring over $K$. We discuss the behaviour of the extremal Betti numbers of the class of squarefree strongly stable ideals. More precisely, we give a numerical characterization of the possible
Let $S=K[x_1,ldots,x_n]$ be the polynomial ring in $n$ variables over a field $K$ and $Isubset S$ a squarefree monomial ideal. In the present paper we are interested in the monomials $u in S$ belonging to the socle $Soc(S/I^{k})$ of $S/I^{k}$, i.e.,
We compute the minimal primary decomposition for completely squarefree lexsegment ideals. We show that critical squarefree monomial ideals are sequentially Cohen-Macaulay. As an application, we give a complete characterization of the completely squar