ﻻ يوجد ملخص باللغة العربية
We analyze in detail the so-called pushing gate for trapped ions, introducing a time dependent harmonic approximation for the external motion. We show how to extract the average fidelity for the gate from the resulting semi-classical simulations. We characterize and quantify precisely all types of errors coming from the quantum dynamics and reveal for the first time that slight nonlinearities in the ion-pushing force can have a dramatic effect on the adiabaticity of gate operation. By means of quantum optimal control techniques, we show how to suppress each of the resulting gate errors in order to reach a high fidelity compatible with scalable fault-tolerant quantum computing.
We show how entanglement shared between encoder and decoder can simplify the theory of quantum error correction. The entanglement-assisted quantum codes we describe do not require the dual-containing constraint necessary for standard quantum error co
Successful implementation of a fault-tolerant quantum computation on a system of qubits places severe demands on the hardware used to control the many-qubit state. It is known that an accuracy threshold $P_{a}$ exists for any quantum gate that is to
In multi-qubit system, correlated errors subject to unwanted interactions with other qubits is one of the major obstacles for scaling up quantum computers to be applicable. We present two approaches to correct such noise and demonstrate with high fid
We study how well topological quantum codes can tolerate coherent noise caused by systematic unitary errors such as unwanted $Z$-rotations. Our main result is an efficient algorithm for simulating quantum error correction protocols based on the 2D su
We report the realization of an elementary quantum processor based on a linear crystal of trapped ions. Each ion serves as a quantum bit (qubit) to store the quantum information in long lived electronic states. We present the realization of single-qu