ترغب بنشر مسار تعليمي؟ اضغط هنا

Correlated X-ray and Very High Energy emission in the gamma-ray binary LS I +61 303

370   0   0.0 ( 0 )
 نشر من قبل Marc Ribo
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The discovery of very high energy (VHE) gamma-ray emitting X-ray binaries has triggered an intense effort to better understand the particle acceleration, absorption, and emission mechanisms in compact binary systems, which provide variable conditions along eccentric orbits. Despite this, the nature of some of these systems, and of the accelerated particles producing the VHE emission, is unclear. To answer some of these open questions, we conducted a multiwavelength campaign of the VHE gamma-ray emitting X-ray binary LS I +61 303 including the MAGIC telescope, XMM-Newton, and Swift during 60% of an orbit in 2007 September. We detect a simultaneous outburst at X-ray and VHE bands, with the peak at phase 0.62 and a similar shape at both wavelengths. A linear fit to the simultaneous X-ray/VHE pairs obtained during the outburst yields a correlation coefficient of r=0.97, while a linear fit to all simultaneous pairs provides r=0.81. Since a variable absorption of the VHE emission towards the observer is not expected for the data reported here, the correlation found indicates a simultaneity in the emission processes. Assuming that they are dominated by a single particle population, either hadronic or leptonic, the X-ray/VHE flux ratio favors leptonic models. This fact, together with the detected photon indices, suggests that in LS I +61 303 the X-rays are the result of synchrotron radiation of the same electrons that produce VHE emission as a result of inverse Compton scattering of stellar photons.



قيم البحث

اقرأ أيضاً

134 - D. B. Kieda 2021
LS I +61$^circ$ ~303 is one of around ten gamma-ray binaries detected so far which has a spectral energy distribution dominated by MeV-GeV photons. It is located at a distance of 2 kpc and consists of a compact object (black hole or neutron star) in an eccentric orbit around a 10-15 $M_{odot}$ Be star, with an orbital period of 26.496 days. The binary orbit modulates the emission ranging from radio to TeV energies. A second, longer, modulation period of 1667 days (the super-orbital period) has also been detected from radio to TeV observations. The VERITAS imaging atmospheric Cherenkov telescope array has been observing LS I +61$^circ$ ~303 since 2006, and has accumulated a dataset that fully covers the entire orbit. Increased coverage of the source in the very-high-energy band is currently underway to provide more results on the modulation pattern, super-orbital period, and orbit-to-orbit variability at the highest energies. The spectral measurements at the highest energies will reveal more information about gamma-ray production/absorption mechanisms, the nature of the compact object, and the particle acceleration mechanism. Using >150 hrs of VERITAS data, we present a detailed study of the spectral energy distribution and periodic behavior of this rare gamma-ray source type at very-high energy.
The MAGIC collaboration has recently reported correlated X-ray and very high-energy gamma-ray emission from the gamma-ray binary LS I +61 303 during ~60% of one orbit. These observations suggest that the emission in these two bands has its origin in a single particle population. We aim at improving our understanding of the source behaviour by explaining the simultaneous X-ray and VHE data through a radiation model. We use a model based on a one zone population of relativistic leptonic particles assuming dominant adiabatic losses located at the position of the compact object. The adiabatic cooling timescale is inferred from the X-ray fluxes. The model can reproduce the spectra and lightcurves in the X-ray and VHE bands. Adiabatic losses could be the key ingredient to explain the X-ray and partially the VHE lightcurves. From the best fit result, we obtain a magnetic field of B=0.2 G, a minimum luminosity budget of ~2x10^35 erg/s and a relatively high acceleration efficiency. In addition, our results seem to confirm that the GeV emission detected by Fermi does not come from the same parent particle population as the X-ray and VHE emission and the Fermi spectrum poses a constraint on the hardness of the particle spectrum at lower energies. In the context of our scenario, more sensitive observations would allow to constrain the inclination angle, which could determine the nature of the compact object.
The discovery of emission of TeV gamma rays from X-ray binaries has triggered an intense effort to better understand the particle acceleration, absorption, and emission mechanisms in compact binary systems. Here we present the pioneering effort of th e MAGIC collaboration to understand the very high energy emission of the prototype system LS I +61 303. We report on the variable nature of the emission from LS I +61 303 and show that this emission is indeed periodic. The system shows regular outburst at TeV energies in phase phi=0.6-0.7 and detect no signal at periastron (phi~ 0.275). Furthermore we find no indication of spectral variation along the orbit of the compact object and the spectral energy distribution is compatible with a simple power law with index Gamma=2.6+-0.2_(stat)+-0.2_(sys). To answer some of the open questions concerning the emission process of the TeV radiation we conducted a multiwavelength campaign with the MAGIC telescope, XMM-Newton, and Swift in September 2007. We detect a simultaneous outburst at X-ray and TeV energies, with the peak at phase 0.62 and a similar shape at both wavelengths. A linear fit to the strictly simultaneous X-ray/TeV flux pairs provides r=0.81 -0.21 +0.06. Here we present the observations and discuss the implications of the obtained results to the emission processes in the system.
The high-mass X-ray binary LS I +61{deg}303 exhibits variability in its radio and X-ray emissions, ranging from minute to hour time-scales. At such short time-scales, not much is known about the possible correlations between these two emissions from this source, which might offer hints to their origin. Here, we study the relationship between these emissions using simultaneous X-ray and radio monitoring. We present new radio observations using the Arcminute Microkelvin Imager Large Array telescope at two frequency bands, 13-15.5 and 15.5-18 GHz. We also describe new X-ray observations performed using the XMM-Newton telescope. These X-ray and radio observations overlapped for five hours. We find for the first time that the radio and X-ray emission are correlated up to 81 per cent with their few percent variability correlated up to 40 per cent. We discuss possible physical scenarios that produces the observed correlations and variability in the radio and X-ray emission of LS I +61{deg}303.
LS I +61 303 is one of only a few high-mass X-ray binaries currently detected at high significance in very high energy gamma-rays. The system was observed over several orbital cycles (between September 2006 and February 2007) with the VERITAS array o f imaging air-Cherenkov telescopes. A signal of gamma-rays with energies above 300 GeV is found with a statistical significance of 8.4 standard deviations. The detected flux is measured to be strongly variable; the maximum flux is found during most orbital cycles at apastron. The energy spectrum for the period of maximum emission can be characterized by a power law with a photon index of Gamma=2.40+-0.16_stat+-0.2_sys and a flux above 300 GeV corresponding to 15-20% of the flux from the Crab Nebula.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا