ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical spectroscopic investigation on the temperature-dependent electronic structure evolution of the Jeff,1/2 Mott insulator Sr2IrO4

308   0   0.0 ( 0 )
 نشر من قبل Soon Jae Moon
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigated the temperature-dependent evolution of the electronic structure of the Jeff,1/2 Mott insulator Sr2IrO4 using optical spectroscopy. The optical conductivity spectra $sigma(omega)$ of this compound has recently been found to exhibit two d-d transitions associated with the transition between the Jeff,1/2 and Jeff,3/2 bands due to the cooperation of the electron correlation and spin-orbit coupling. As the temperature increases, the two peaks show significant changes resulting in a decrease in the Mott gap. The experimental observations are compared with the results of first-principles calculation in consideration of increasing bandwidth. We discuss the effect of the temperature change on the electronic structure of Sr2IrO4 in terms of local lattice distortion, excitonic effect, electron-phonon coupling, and magnetic ordering.



قيم البحث

اقرأ أيضاً

Stoichiometric Sr2IrO4 is a ferromagnetic Jeff = 1/2 Mott insulator driven by strong spin-orbit coupling. Introduction of very dilute oxygen vacancies into single-crystal Sr2IrO4-delta with delta < 0.04 leads to significant changes in lattice paramet ers and an insulator-to-metal transition at TMI = 105 K. The highly anisotropic electrical resistivity of the low-temperature metallic state for delta ~ 0.04 exhibits anomalous properties characterized by non-Ohmic behavior and an abrupt current-induced transition in the resistivity at T* = 52 K, which separates two regimes of resisitive switching in the nonlinear I-V characteristics. The novel behavior illustrates an exotic ground state and constitutes a new paradigm for devices structures in which electrical resistivity is manipulated via low-level current densities ~ 10 mA/cm2 (compared to higher spin-torque currents ~ 107-108 A/cm2) or magnetic inductions ~ 0.1-1.0 T.
Zeldovich (spin) anapole correlations in Sr2IrO4 unveiled by magnetic neutron diffraction contravene the spin-orbit coupled ground state used by the jeff = 1/2 (pseudo-spin) model. Specifically, spin and space know inextricable knots which bind each to the other in the iridate. The diffraction property studied in the Letter is enforced by strict requirements from quantum mechanics and magnetic symmetry. It has not been exploited in the past, whereas neutron diffraction by anapole moments is established. Entanglement of the electronic degrees of freedom is captured by binary correlations of the anapole and position operators, and hallmarked in the diffraction amplitude by axial atomic multipoles with an even rank.
289 - B. J. Kim , Hosub Jin , S. J. Moon 2008
We investigated electronic structure of 5d transition-metal oxide Sr2IrO4 using angle-resolved photoemission, optical conductivity, and x-ray absorption measurements and first-principles band calculations. The system was found to be well described by novel effective total angular momentum Jeff states, in which relativistic spin-orbit (SO) coupling is fully taken into account under a large crystal field. Despite of delocalized Ir 5d states, the Jeff-states form so narrow bands that even a small correlation energy leads to the Jeff = 1/2 Mott ground state with unique electronic and magnetic behaviors, suggesting a new class of the Jeff quantum spin driven correlated-electron phenomena.
In CaIrO3 electronic correlation, spin-orbit coupling, and tetragonal crystal field splitting are predicted to be of comparable strength. However, the nature of its ground state is still object of debate, with contradictory experimental and theoretic al results. We probe the ground state of CaIrO3 and assess the effective tetragonal crystal field splitting and spin-orbit coupling at play in this system by means of resonant inelastic x-ray scattering. We conclude that insulating CaIrO3 is not a jeff = 1/2 iridate and discuss the consequences of our finding to the interpretation of previous experiments. In particular, we clarify how the Mott insulating state in iridates can be readily extended beyond the jeff = 1/2 ground state.
225 - Cun Ye , Peng Cai , Runze Yu 2012
Although the mechanism of superconductivity in the cuprates remains elusive, it is generally agreed that at the heart of the problem is the physics of doped Mott insulators. The cuprate parent compound has one unpaired electron per Cu site, and is pr edicted by band theory to be a half-filled metal. The strong onsite Coulomb repulsion, however, prohibits electron hopping between neighboring sites and leads to a Mott insulator ground state with antiferromagnetic (AF) ordering. Charge carriers doped into the CuO2 plane destroy the insulating phase and superconductivity emerges as the carrier density is sufficiently high. The natural starting point for tackling high Tc superconductivity is to elucidate the electronic structure of the parent Mott insulator and the behavior of a single doped charge. Here we use a scanning tunneling microscope to investigate the atomic scale electronic structure of the Ca2CuO2Cl2 parent Mott insulator of the cuprates. The full electronic spectrum across the Mott-Hubbard gap is uncovered for the first time, which reveals the particle-hole symmetric and spatially uniform Hubbard bands. A single electron donated by surface defect is found to create a broad in-gap electronic state that is strongly localized in space with spatial characteristics intimately related to the AF spin background. The unprecedented real space electronic structure of the parent cuprate sheds important new light on the origion of high Tc superconductivity from the doped Mott insulator perspective.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا