ترغب بنشر مسار تعليمي؟ اضغط هنا

Mid-infrared PAH and H2 emission as a probe of physical conditions in extreme PDRs

157   0   0.0 ( 0 )
 نشر من قبل Olivier Berne
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Mid-infrared (IR) observations of polycyclic aromatic hydrocarbons (PAHs) and molecular hydrogen emission are a potentially powerful tool to derive physical properties of dense environments irradiated by intense UV fields. We present new, spatially resolved, emph{Spitzer} mid-IR spectroscopy of the high UV-field and dense photodissocation region (PDR) around Monoceros R2, the closest ultracompact hII region, revealing the spatial structure of ionized gas, PAHs and H$_2$ emissions. Using a PDR model and PAH emission feature fitting algorithm, we build a comprehensive picture of the physical conditions prevailing in the region. We show that the combination of the measurement of PAH ionization fraction and of the ratio between the H$_2$ 0-0 S(3) and S(2) line intensities, respectively at 9.7 and 12.3 $mu$m, allows to derive the fundamental parameters driving the PDR: temperature, density and UV radiation field when they fall in the ranges $T = 250-1500 $K, $n_H=10^4-10^6$cm$^{-3}$, $G_0=10^3-10^5$ respectively. These mid-IR spectral tracers thus provide a tool to probe the similar but unresolved UV-illuminated surface of protoplanetary disks or the nuclei of starburst galaxies.



قيم البحث

اقرأ أيضاً

To observationally explore physical processes, we present a multi-wavelength study of a wide-scale environment toward l = 13.7 - 14.9 degrees containing a mid-infrared bubble N14. The analysis of 12CO, 13CO, and C18O gas at [31.6, 46] km/s reveals an extended physical system (extension ~59 pc x 29 pc), which hosts at least five groups of the ATLASGAL 870 micron dust clumps at d ~3.1 kpc. These spatially-distinct groups/sub-regions contain unstable molecular clumps, and are associated with several Class I young stellar objects (mean age ~0.44 Myr). At least three groups of ATLASGAL clumps associated with the expanding HII regions (including the bubble N14) and embedded infrared dark clouds, devoid of the ionized gas, are found in the system. The observed spectral indices derived using the GMRT and THOR radio continuum data suggest the presence of non-thermal emission with the HII regions. High resolution GMRT radio continuum map at 1280 MHz traces several ionized clumps powered by massive B-type stars toward N14, which are considerably young (age ~10^3 - 10^4 years). Locally, early stage of star formation is evident toward all the groups of clumps. The position-velocity maps of 12CO, 13CO, and C18O exhibit an oscillatory-like velocity pattern toward the selected longitude range. Considering the presence of different groups/sub-regions in the system, the oscillatory pattern in velocity is indicative of the fragmentation process. All these observed findings favour the applicability of the global collapse scenario in the extended physical system, which also seems to explain the observed hierarchy.
We present observations from the First Light Infrared TEst CAMera (FLITECAM) on board the Stratospheric Observatory for Infrared Astronomy (SOFIA), the Spitzer Infrared Array Camera (IRAC) and the Spitzer Infrared Spectrograph (IRS) SH mode in three well-known Photodissocation Regions (PDRs), the reflection nebulae (RNe) NGC 7023 and NGC 2023 and to the southeast of the Orion Bar, which are well suited to probe emission from Polycyclic Aromatic Hydrocarbon molecules (PAHs). We investigate the spatial behaviour of the FLITECAM 3.3 um filter as a proxy for the 3.3 um PAH band, the integrated 11.2 um PAH band, and the IRAC 8.0 um filter as a proxy for the sum of the 7.7 and 8.6 um PAH bands. The resulting ratios of 11.2/3.3 and IRAC 8.0/11.2 provide an approximate measure of the average PAH size and PAH ionization respectively. In both RNe, we find that the relative PAH ionization and the average PAH size increases with decreasing distance to the illuminating source. The average PAH sizes derived for NGC 2023 are greater than those found for NGC 7023 at all points. Both results indicate that PAH size is dependent on the radiation field intensity. These results provide additional evidence of a rich carbon-based chemistry driven by the photo-chemical evolution of the omnipresent PAH molecules within the interstellar medium. In contrast, we did not detect a significant variation in the average PAH size found in the region southeast of the Orion Bar and report a peculiar PAH ionization radial profile.
Polycyclic Aromatic Hydrocarbon (PAH) molecules have been long proposed to be a major carrier of Unidentified Infrared (UIR) emission bands that have been observed ubiquitously in various astrophysical environments. These molecules can potentially be an efficient reservoir of deuterium. Once the infrared properties of the deuterium- containing PAHs are well understood both experimentally and theoretically, the interstellar UIR bands can be used as a valuable tool to infer the cause of the deuterium depletion in the ISM. Density Functional Theory (DFT) calculations have been carried out on deuterium-containing ovalene variants to study the infrared properties of these molecules. These include deuterated ovalene, cationic deuterated ovalene, deuteronated ovalene and deuterated-deuteronated ovalene. We present a D/H ratio calculated from our theoretical study to compare with the observationally proposed D/H ratio.
We present results on the properties of neon emission in $zsim2$ star-forming galaxies drawn from the MOSFIRE Deep Evolution Field (MOSDEF) survey. Doubly-ionized neon ([NeIII]3869) is detected at $geq3sigma$ in 61 galaxies, representing $sim$25% of the MOSDEF sample with H$alpha$, H$beta$, and [OIII]$5007$ detections at similar redshifts. We consider the neon emission-line properties of both individual galaxies with [NeIII]3869 detections and composite $zsim2$ spectra binned by stellar mass. With no requirement of [NeIII]3869 detection, the latter provide a more representative picture of neon emission-line properties in the MOSDEF sample. The [NeIII]3869/[OII]3727 ratio (Ne3O2) is anti-correlated with stellar mass in $zsim2$ galaxies, as expected based on the mass-metallicity relation. It is also positively correlated with the [OIII]$5007$/[OII]$3727$ ratio (O32), but $zsim2$ line ratios are offset towards higher Ne3O2 at fixed O32, compared with both local star-forming galaxies and individual H~II regions. Despite the offset towards higher Ne3O2 at fixed O32 at $zsim2$, biases in inferred Ne3O2-based metallicity are small. Accordingly, Ne3O2 may serve as an important metallicity indicator deep into the reionization epoch. Analyzing additional rest-optical line ratios including [NeIII]$3869$/[OIII]$5007$ (Ne3O3) and [OIII]$5007$/H$beta$ (O3H$beta$), we conclude that the nebular emission-line ratios of $zsim2$ star-forming galaxies suggest a harder ionizing spectrum (lower stellar metallicity, i.e., Fe/H) at fixed gas-phase oxygen abundance, compared to systems at $zsim0$. These new results based on neon lend support to the physical picture painted by oxygen, nitrogen, hydrogen, and sulfur emission, of an ionized ISM in high-redshift star-forming galaxies irradiated by chemically young, $alpha$-enhanced massive stars.
Infrared Dark Clouds (IRDCs) are very dense and highly extincted regions that host the initial conditions of star and stellar cluster formation. It is crucial to study the kinematics and molecular content of IRDCs to test their formation mechanism an d ultimately characterise these initial conditions. We have obtained high-sensitivity Silicon Monoxide, SiO(2-1), emission maps toward the six IRDCs, G018.82$-$00.28, G019.27+00.07, G028.53$-$00.25, G028.67+00.13, G038.95$-$00.47 and G053.11+00.05 (cloud A, B, D, E, I and J, respectively), using the 30-m antenna at the Instituto de Radioastronom{i}a Millim{e}trica (IRAM30m). We have investigated the SiO spatial distribution and kinematic structure across the six clouds to look for signatures of cloud-cloud collision events that may have formed the IRDCs and triggered star formation within them. Toward clouds A, B, D, I and J we detect spatially compact SiO emission with broad line profiles which are spatially coincident with massive cores. Toward the IRDCs A and I, we report an additional SiO component that shows narrow line profiles and that is widespread across quiescent regions. Finally, we do not detect any significant SiO emission toward cloud E. We suggest that the broad and compact SiO emission detected toward the clouds is likely associated with ongoing star formation activity within the IRDCs. However, the additional narrow and widespread SiO emission detected toward cloud A and I may have originated from the collision between the IRDCs and flows of molecular gas pushed toward the clouds by nearby HII regions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا