ﻻ يوجد ملخص باللغة العربية
We propose a E_6 inspired supersymmetric model with a non-Abelian discrete flavor symmetry (S_4 group); that is, SU(3)_c x SU(2)_W x U(1)_Y x U(1)_X x S_4 x Z_2. In our scenario, the additional abelian gauge symmetry; U(1)_X, not only solves the mu-problem in the minimal Supersymmetric Standard Model(MSSM), but also requires new exotic fields which play an important role in solving flavor puzzles. If our exotic quarks can be embedded into a S_4 triplet, which corresponds to the number of the generation, one finds that dangerous proton decay can be well-suppressed. Hence, it might be expected that the generation structure for lepton and quark in the SM(Standard Model) can be understood as a new system in order to stabilize the proton in a supersymemtric standard model (SUSY). Moreover, due to the nature of the discrete non-Abelian symmetry itself, Yukawa coupling constants of our model are drastically reduced. In our paper, we show two predictive examples of the models for quark sector and lepton sector, respectively.
We construct a 3-3-1 model based on family symmetry S_4 responsible for the neutrino and quark masses. The tribimaximal neutrino mixing and the diagonal quark mixing have been obtained. The new lepton charge mathcal{L} related to the ordinary lepton
We study a flavor model with $A_4$ symmetry which originates from $S_4$ modular group. In $S_4$ symmetry, $Z_2$ subgroup can be anomalous, and then $S_4$ can be violated to $A_4$. Starting with a $S_4$ symmetric Lagrangian at the tree level, the Lagr
We study a simple extension of the Zee model, in which a discrete $Z_2$ symmetry imposed in the original model is replaced by a global $U(1)$ symmetry retaining the same particle content. Due to the $U(1)$ symmetry with flavor dependent charge assign
We study the modulus stabilization in an $A_4$ model whose $A_4$ flavor symmetry is originated from the $S_4$ modular symmetry. We can stabilize the modulus so that the $A_4$ invariant superpotential leads to the realistic lepton masses and mixing an
We show that in a large class of models based on anomalous U(1) symmetry which addresses the fermion mass hierarchy problem, leptonic flavor changing processes are induced that are in the experimentally interesting range. The flavor violation occurs