ﻻ يوجد ملخص باللغة العربية
We present a study of the ionized, neutral atomic, and molecular gas associated with the ring nebula RCW 78 around the WR star HD 117688 (= WR 55). We based our study on CO observations carried out with the SEST and NANTEN telescopes. We report the detection of molecular gas with velocities in the range -56 to -33 km/s. The CO emission is mainly connected to the western section, with a total molecular mass of 1.3 x 10^5 solar masses. The analysis of the HI gas distribution reveals the HI envelope of the molecular cloud, while the radio continuum emission shows a ring-like structure, which is the radio counterpart of the optical nebula. The gas distribution is compatible with the western section of RCW 78 having originated in the photodissociation and ionization of the molecular gas by HD 117688, and with the action of the stellar winds of the WR star. A number of infrared point sources classified as YSO candidates showed that stellar formation activity is present in the molecular gas linked to the nebula. The fact that the expansion of the bubble have triggered star formation in this region can not be discarded.
Here we report observations of the two lowest inversion transitions of ammonia with the 70-m Tidbinbilla radio telescope. They were conducted to determine the kinetic temperatures in the dense clumps of the G333 giant molecular cloud associated with
In a previous paper we have investigated the molecular environment towards the eastern border of the SNR G18.8+0.3. Continuing with the study of the surroundings of this SNR, in this work we focus on its southern border, which in the radio continuum
We present high-resolution archival Atacama Large Millimeter/submillimeter Array (ALMA) CO J=3-2 and J=6-5 and HCO+ J=4-3 observations and new CARMA CO and 13CO J=1-0 observations of the luminous infrared galaxy NGC 1614. The high-resolution maps sho
We have carried out a near-infrared, narrow-band imaging survey of the Crab Nebula, in the H2 2.12 micron and Br-gamma 2.17 micron lines, using the Spartan Infrared camera on the SOAR Telescope. Over a 2.8 x 5.1 area that encompasses about 2/3 of the
The H II region RCW120 is a well-known object, which is often considered as a target to verify theoretical models of gas and dust dynamics in the interstellar medium. However, the exact geometry of RCW120 is still a matter of debate. In this work, we