An Evolutionary Squeaky Wheel Optimisation Approach to Personnel Scheduling


الملخص بالإنكليزية

The quest for robust heuristics that are able to solve more than one problem is ongoing. In this paper, we present, discuss and analyse a technique called Evolutionary Squeaky Wheel Optimisation and apply it to two different personnel scheduling problems. Evolutionary Squeaky Wheel Optimisation improves the original Squeaky Wheel Optimisations effectiveness and execution speed by incorporating two extra steps (Selection and Mutation) for added evolution. In the Evolutionary Squeaky Wheel Optimisation, a cycle of Analysis-Selection-Mutation-Prioritization-Construction continues until stopping conditions are reached. The aim of the Analysis step is to identify below average solution components by calculating a fitness value for all components. The Selection step then chooses amongst these underperformers and discards some probabilistically based on fitness. The Mutation step further discards a few components at random. Solutions can become incomplete and thus repairs may be required. The repairs are carried out by using the Prioritization to first produce priorities that determine an order by which the following Construction step then schedules the remaining components. Therefore, improvement in the Evolutionary Squeaky Wheel Optimisation is achieved by selective solution disruption mixed with interative improvement and constructive repair. Strong experimental results are reported on two different domains of personnel scheduling: bus and rail driver scheduling and hospital nurse scheduling.

تحميل البحث