ﻻ يوجد ملخص باللغة العربية
Using scanning tunneling microscopy and Ginzburg-Landau simulations we explore vortex configurations in magnetically coupled NbSe$_2$-Permalloy superconductor-ferromagnet bilayer. The Permalloy film with stripe domain structure induces periodic local magnetic induction in the superconductor creating a series of pinning-antipinning channels for externally added magnetic flux quanta. Such laterally confined Abrikosov vortices form quasi-1D arrays (chains). The transitions between multichain states occur through propagation of kinks at the intermediate fields. At high fields we show that the system becomes non-linear due to a change in both the number of vortices and the confining potential. The longitudinal instabilities of the resulting vortex structures lead to vortices `levitating in the anti-pinning channels.
We use local and global magnetometry measurements to study the influence of magnetic domain width w on the domain-induced vortex pinning in superconducting/ferromagnetic bilayers, built of a Nb film and a ferromagnetic Co/Pt multilayer with perpendic
The superconducting critical temperature $T_C$ of a superconductor/ferromagnet (S/F) bilayer with spin-flip scatterings at the interface is calculated as a function of the ferromagnet thickness $d_F$ in the dirty limit employing the Usadel equation.
The mechanism of the interplay between superconductivity and magnetism is one of the intriguing and challenging problems in physics. Theory has predicted that the ferromagnetic order can coexist with the superconducting order in the form of a spontan
The interplay between superconductivity and magnetism gives rise to many intriguing and exciting phenomena. In this Letter we report about a novel manifestation of this interplay: a temperature induced phase transition between different spontaneous v
We demonstrate experimentally that the presence of a single domain wall in an underlying ferromagnetic BaFe_{12}O_{19} substrate can induce a considerable asymmetry in the current (I) - voltage (V) characteristics of a superconducting Al bridge. The