ترغب بنشر مسار تعليمي؟ اضغط هنا

Focusing Cosmic Telescopes: Exploring Redshift z~5-6 Galaxies with the Bullet Cluster 1E0657-56

89   0   0.0 ( 0 )
 نشر من قبل Maru\\v{s}a Brada\\v{c}
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. Bradav{c}




اسأل ChatGPT حول البحث

The gravitational potential of clusters of galaxies acts as a cosmic telescope allowing us to find and study galaxies at fainter limits than otherwise possible and thus probe closer to the epoch of formation of the first galaxies. We use the Bullet Cluster 1E0657-56 (z = 0.296) as a case study, because its high mass and merging configuration makes it one of the most efficient cosmic telescopes we know. We develop a new algorithm to reconstruct the gravitational potential of the Bullet Cluster, based on a non-uniform adaptive grid, combining strong and weak gravitational lensing data derived from deep HST/ACS F606W-F775W-F850LP and ground-based imaging. We exploit this improved mass map to study z~5-6 Lyman Break Galaxies (LBGs), which we detect as dropouts. One of the LBGs is multiply imaged, providing a geometric confirmation of its high redshift, and is used to further improve our mass model. We quantify the uncertainties in the magnification map reconstruction in the intrinsic source luminosity, and in the volume surveyed, and show that they are negligible compared to sample variance when determining the luminosity function of high-redshift galaxies. With shallower and comparable magnitude limits to HUDF and GOODS, the Bullet cluster observations, after correcting for magnification, probe deeper into the luminosity function of the high redshift galaxies than GOODS and only slightly shallower than HUDF. We conclude that accurately focused cosmic telescopes are the most efficient way to sample the bright end of the luminosity function of high redshift galaxies and - in case they are multiply imaged - confirm their redshifts.



قيم البحث

اقرأ أيضاً

We present the 250, 350, and 500 micron detection of bright submillimeter emission in the direction of the Bullet Cluster measured by the Balloon-borne Large Aperture Submillimeter Telescope (BLAST). The 500 micron centroid is coincident with an AzTE C 1.1 mm point-source detection at a position close to the peak lensing magnification produced by the cluster. However, the 250 micron and 350 micron centroids are elongated and shifted toward the south with a differential shift between bands that cannot be explained by pointing uncertainties. We therefore conclude that the BLAST detection is likely contaminated by emission from foreground galaxies associated with the Bullet Cluster. The submillimeter redshift estimate based on 250-1100 micron photometry at the position of the AzTEC source is z_phot = 2.9 (+0.6 -0.3), consistent with the infrared color redshift estimation of the most likely IRAC counterpart. These flux densities indicate an apparent far-infrared luminosity of L_FIR = 2E13 Lsun. When the amplification due to the gravitational lensing of the cluster is removed, the intrinsic far-infrared luminosity of the source is found to be L_FIR <= 10^12 Lsun, consistent with typical luminous infrared galaxies.
Deep 1.1 mm continuum observations of 1E0657-56 (the Bullet Cluster) taken with the millimeter-wavelength camera AzTEC on the 10-m Atacama Submillimeter Telescope Experiment (ASTE), have revealed an extremely bright (S$_{rm{1.1mm}}=15.9$ mJy) unresol ved source. This source, MMJ065837-5557.0, lies close to a maximum in the density of underlying mass-distribution, towards the larger of the two interacting clusters as traced by the weak-lensing analysis of Clowe et al. 2006. Using optical--IR colours we argue that MMJ065837-5557.0 lies at a redshift of $z = 2.7 pm 0.2$. A lensing-derived mass-model for the Bullet Cluster shows a critical-line (caustic) of magnification within a few arcsecs of the AzTEC source, sufficient to amplify the intrinsic millimeter-wavelength flux of the AzTEC galaxy by a factor of $gg 20$. After subtraction of the foreground cluster emission at 1.1mm due to the Sunyaev-Zeldovich effect, and correcting for the magnification, the rest-frame FIR luminosity of MMJ065837-5557.0 is $le 10^{12} rm L_{odot}$, characteristic of a luminous infrared galaxy (LIRG). We explore various scenarios to explain the colors, morphologies and positional offsets between the potential optical and IR counterparts, and their relationship with MMJ065837-5557.0. Until higher-resolution and more sensitive (sub)millimeter observations are available, the detection of background galaxies close to the caustics of massive lensing clusters offers the only opportunity to study this intrinsically faint millimeter-galaxy population.
We present images and long-slit spectra obtained with FORS1 at UT1 of the VLT centered on the gravitational arc of the galaxy cluster 1E0657-56 (z = 0.296). The cluster is one of the hottest, most massive clusters known so far and acts as a powerful gravitational telescope, amplifying the flux of background sources by up to a factor of 17. We present photometric results together with the spectra of the gravitational arc (z = 3.24) and four additional amplified high redshift objects (z = 2.34 to 3.08) that were also included in the slit by chance coincidence. A magnification map has been obtained from a lens model derived from the multiple image systems. We compare our observed spectra with models and briefly discuss the stellar contents of these galaxies. Furthermore we measured the equivalent widths of the CIV 1550 and SiIV 1400 absorption lines for the objects behind 1E0657-56 studied here, as well as for some additional starburst galaxies (nearby and at high z). For CIV we find an increasing absorption equivalent width with decreasing redshift. We discuss whether this correlation could be related to the increase of metallicity with the age of the universe.
We present a new investigation of the intergalactic medium (IGM) near the end of reionization using dark gaps in the Lyman-alpha (Ly$alpha$) forest. Using spectra of 55 QSOs at $z_{rm em}>5.5$, including new data from the XQR-30 VLT Large Programme, we identify gaps in the Ly$alpha$ forest where the transmission averaged over 1 comoving $h^{-1},{rm Mpc}$ bins falls below 5%. Nine ultra-long ($L > 80~h^{-1},{rm Mpc}$) dark gaps are identified at $z<6$. In addition, we quantify the fraction of QSO spectra exhibiting gaps longer than $30~h^{-1},{rm Mpc}$, $F_{30}$, as a function of redshift. We measure $F_{30} simeq 0.9$, 0.6, and 0.15 at $z = 6.0$, 5.8, and 5.6, respectively, with the last of these long dark gaps persisting down to $z simeq 5.3$. Comparing our results with predictions from hydrodynamical simulations, we find that the data are consistent with models wherein reionization extends significantly below redshift six. Models wherein the IGM is essentially fully reionized that retain large-scale fluctuations in the ionizing UV background at $z lesssim 6$ are also potentially consistent with the data. Overall, our results suggest that signature of reionization in the form of islands of neutral hydrogen and/or large-scale fluctuations in the ionizing background remain present in the IGM until at least $z simeq 5.3$.
We identify the extended Einstein IPC X-ray source, 1E0657-56, with a previously unknown cluster of galaxies at a redshift of $z=0.296$. Optical CCD images show the presence of a gravitational arc in this cluster and galaxy spectra yield a cluster ve locity dispersion of $1213^{+352}_{-191}$ km s$^{-1}$. X-ray data obtained with the ROSAT HRI and ASCA indicate that 1E0657-56 is a highly luminous cluster in which a merger of subclusters may be occurring. The temperature of the hot gas in 1E0657-56 is $rm{kT}=17.4 pm 2.5 keV$, which makes it an unusually hot cluster, with important cosmological implications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا