ﻻ يوجد ملخص باللغة العربية
We present a spectroscopic library of late spectral type stellar templates in the near-IR range 2.15-2.42microns, at R=5300-5900 resolution, oriented to support stellar kinematics studies in external galaxies, such as the direct determination of the masses of supermassive black-holes in nearby active (or non-active) galaxies. The combination of high spectral resolution and state-of-the-art instrumentation available in 8-m class telescopes has made the analysis of circumnuclear stellar kinematics using the near-IR CO band heads one of the most used techniques for such studies, and this library aims to provide the supporting datasets required by the higher spectral resolution and larger spectral coverage currently achieved with modern near-IR spectrographs. Examples of the application for kinematical analysis are given for data obtained with two Gemini instruments, but the templates can be easily adjusted for use with other near-IR spectrographs at similar or lower resolution. The example datasets are also used to revisit the template mismatch effect and the dependence of the velocity dispersion values obtained from the fitting process with the characteristics of the stellar templates. The library is available in electronic form from the Gemini web pages (link above).
Integrated light spectroscopy from galaxies can be used to study the stellar populations that cannot be resolved into individual stars. This analysis relies on stellar population synthesis (SPS) techniques to study the formation history and structure
Empirical stellar libraries are extensively used to extract stellar kinematics in galaxies and to build stellar population models. An accurate knowledge of the spectral resolution of these libraries is critical to avoid propagation errors and uncerta
We used the Project 1640 near-infrared coronagraph and integral field spectrograph to observe 19 young solar type stars. Five of these stars are known binary stars and we detected the late-type secondaries and were able to measure their JH spectra wi
Due to the ever-expanding volume of observed spectroscopic data from surveys such as SDSS and LAMOST, it has become important to apply artificial intelligence (AI) techniques for analysing stellar spectra to solve spectral classification and regressi
We analyze 40 cosmological re-simulations of individual massive galaxies with present-day stellar masses of $M_{*} > 6.3 times 10^{10} M_{odot}$ in order to investigate the physical origin of the observed strong increase in galaxy sizes and the decre