ترغب بنشر مسار تعليمي؟ اضغط هنا

GeV emission from Gamma Ray Bursts: a radiative fireball?

156   0   0.0 ( 0 )
 نشر من قبل Gabriele Ghisellini
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the emission observed at energies greater than 100 MeV of 11 Gamma Ray Bursts (GRBs) detected by the Fermi/Large Area Telescope (LAT) until October 2009. The GeV emission has three main properties: (i) its duration is often longer than the duration of the softer emission detected by the Gamma Burst Monitor (GBM) onboard Fermi [this confirms earlier results from the Energetic Gamma-Ray Experiment Telescope (EGRET)]; (ii) its spectrum is consistent with F(v) propto v^(-1) and does not show strong spectral evolution; (iii) for the brightest bursts, the flux detected by the LAT decays as a power law with a typical slope: t^(-1.5). We argue that the observed >0.1 GeV flux can be interpreted as afterglow emission shortly following the start of the prompt phase emission as seen at smaller frequencies. The decay slope is what expected if the fireball emission is produced in the radiative regime, i.e. all dissipated energy is radiated away. We also argue that the detectability in the GeV energy range depends on the bulk Lorentz factor Gamma of the bursts, being strongly favoured in the case of large Gamma. This implies that the fraction of bursts detected at high energies corresponds to the fraction of bursts having the largest Gamma. The radiative interpretation can help to explain why the observed X-ray and optical afterglow energetics are much smaller than the energetics emitted during the prompt phase, despite the fact that the collision with the external medium should be more efficient than internal shocks in producing the radiation we see.



قيم البحث

اقرأ أيضاً

We examine 288 GRBs detected by the Fermi Gamma-ray Space Telescopes Gamma-ray Burst Monitor (GBM) that fell within the field-of-view of Fermis Large Area Telescope (LAT) during the first 2.5 years of observations, which showed no evidence for emissi on above 100 MeV. We report the photon flux upper limits in the 0.1-10 GeV range during the prompt emission phase as well as for fixed 30 s and 100 s integrations starting from the trigger time for each burst. We compare these limits with the fluxes that would be expected from extrapolations of spectral fits presented in the first GBM spectral catalog and infer that roughly half of the GBM-detected bursts either require spectral breaks between the GBM and LAT energy bands or have intrinsically steeper spectra above the peak of the { u}F{ u} spectra (Epk). In order to distinguish between these two scenarios, we perform joint GBM and LAT spectral fits to the 30 brightest GBM-detected bursts and find that a majority of these bursts are indeed softer above Epk than would be inferred from fitting the GBM data alone. Approximately 20% of this spectroscopic subsample show statistically significant evidence for a cut-off in their high-energy spectra, which if assumed to be due to {gamma}{gamma} attenuation, places limits on the maximum Lorentz factor associated with the relativistic outflow producing this emission. All of these latter bursts have maximum Lorentz factor estimates that are well below the minimum Lorentz factors calculated for LAT- detected GRBs, revealing a wide distribution in the bulk Lorentz factor of GRB outflows and indicating that LAT-detected bursts may represent the high end of this distribution.
We consider some general implications of bright gamma-ray counterparts to fast radio bursts (FRBs). We show that even if these manifest in only a fraction of FRBs, gamma-ray detections with current satellites (including Swift) can provide stringent c onstraints on cosmological FRB models. If the energy is drawn from the magnetic energy of a compact object such as a magnetized neutron star, the sources should be nearby and be very rare. If the intergalactic medium is responsible for the observed dispersion measure, the required gamma-ray energy is comparable to that of the early afterglow or extended emission of short gamma-ray bursts. While this can be reconciled with the rotation energy of compact objects, as expected in many merger scenarios, the prompt outflow that yields the gamma-rays is too dense for radio waves to escape. Highly relativistic winds launched in a precursor phase, and forming a wind bubble, may avoid the scattering and absorption limits and could yield FRB emission. Largely independent of source models, we show that detectable radio afterglow emission from gamma-ray bright FRBs can reasonably be anticipated. Gravitational wave searches can also be expected to provide useful tests.
125 - Lara Nava 2018
The number of Gamma-Ray Bursts (GRBs) detected at high energies ($sim,0.1-100$ GeV) has seen a rapid increase over the last decade, thanks to observations from the Fermi-Large Area Telescope. The improved statistics and quality of data resulted in a better characterisation of the high-energy emission properties and in stronger constraints on theoretical models. In spite of the many achievements and progresses, several observational properties still represent a challenge for theoretical models, revealing how our understanding is far from being complete. This paper reviews the main spectral and temporal properties of $sim,0.1-100$ GeV emission from GRBs and summarises the most promising theoretical models proposed to interpret the observations. Since a boost for the understanding of GeV radiation might come from observations at even higher energies, the present status and future prospects for observations at very-high energies (above $sim$ 100 GeV) are also discussed. The improved sensitivity of upcoming facilities, coupled to theoretical predictions, supports the concrete possibility for future ground GRB detections in the high/very-high energy domain.
The origin of the X-ray afterglows of gamma-ray bursts has regularly been debated. We fit both the fireball-shock and millisecond-magnetar models of gamma-ray bursts to the X-ray data of GRB 130603B and 140903A. We use Bayesian model selection to ans wer the question of which model best explains the data. This is dependent on the maximum allowed non-rotating neutron star mass $M_{textrm{TOV}}$, which depends solely on the unknown nuclear equation of state. We show that the data for GRB140903A favours the millisecond-magnetar model for all possible equations of state, while the data for GRB130603B favours the millisecond-magnetar model if $M_{textrm{TOV}} gtrsim 2.3 M_{odot}$. If $M_{textrm{TOV}} lesssim 2.3 M_{odot}$, the data for GRB130603B supports the fireball-shock model. We discuss implications of this result in regards to the nuclear equation of state and the prospect of gravitational-wave emission from newly-born millisecond magnetars.
Star-forming galaxies are huge reservoirs of cosmic rays (CRs) and these CRs convert a significant fraction of their energy into $gamma$-rays by colliding with the interstellar medium (ISM). Several nearby star-forming galaxies have been detected in GeV-TeV $gamma$-rays. It is also found that the $gamma$-ray luminosities in 0.1-100 GeV correlate well with indicators of star formation rates of the galaxies, such as the total infrared (IR) luminosity. In this paper, we report a systematic search for possible $gamma$-ray emission from galaxies in the IRAS Revised Bright Galaxies Sample, using 11.4 years of $gamma$-ray data taken by the Fermi Large Area Telescope (LAT). Two new galaxies, M33 and Arp 299, are detected significantly. The two galaxies are consistent with the empirical correlation between the $gamma$-ray luminosity and total infrared luminosity, suggesting that their $gamma$-ray emissions should mainly originate from CRs interacting with ISM. Nevertheless, there is a tentative evidence that the flux of the $gamma$-ray emission from Arp~299 is variable. If the variability is true, part of the emission from Arp 299 should originate from the obscured AGN in this interacting galaxy system. In addition, we find that the $gamma$-ray excess from M33 is located at the northeast region of the galaxy, where a supergiant H II region, NGC604, resides. This indicates that some bright star-forming regions in spiral galaxies could play a dominant role in the galaxy in producing $gamma$-ray emission.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا