ترغب بنشر مسار تعليمي؟ اضغط هنا

Improved transverse (e,e) response function of 3He at intermediate momentum transfers

297   0   0.0 ( 0 )
 نشر من قبل Winfried Leidemann
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The transverse electron scattering response function of 3He is studied in the quasi-elastic peak region for momentum transfers between 500 and 700 MeV/c. A conventional description of the process leads to results at a substantial variation with experiment. To improve the results, the present calculation is done in a reference frame (the ANB or Active Nucleon Breit frame) which diminishes the influence of relativistic effects on nuclear states. The laboratory frame response function is then obtained via a kinematics transformation. In addition, a one-body nuclear current operator is employed that includes all leading order relativistic corrections. Multipoles of this operator are listed. It is shown that the use of the ANB frame leads to a sizable shift of the quasi-elastic peak to lower energy and, contrary to the relativistic current, also to an increase of the peak height. The additionally considered meson exchange current contribution is quite small in the peak region. In comparison with experiment one finds an excellent agreement of the peak positions. The peak height agrees well with experiment for the lowest considered momentum transfer (500 MeV/c), but tends to be too high for higher momentum transfer (10% at 700 MeV/c).



قيم البحث

اقرأ أيضاً

The transverse electron scattering response function of 3He was recently studied by us in the quasi-elastic peak region for momentum transfers q between 500 and 700 MeV/c. Those results, obtained using the Active Nucleon Breit frame (ANB), are here s upplemented by calculations in the laboratory, Breit and ANB frames using the two-fragment model discussed in our earlier work on the frame dependence of the the longitudinal response function R_L(q,omega). We find relatively frame independent results and good agreement with experiment especially for the lower momentum transfers. This agreement occurs when we neglect an omega-dependent piece of the one-body current relativistic correction. An inclusion of this term leads however to a rather pronounced frame dependence at q=700 MeV/c. A discussion of this term is given here. This report also includes a correction to our previous ANB results for R_T(q,omega).
The possibility to extract relevant information on spectroscopic factors from (e,e$$p) reactions at high $Q^2$ is studied. Recent ${}^{16}$O(e,e$$p) data at $Q^2 = 0.8$ (GeV/$c)^2$ are compared to a theoretical approach which includes an eikonal desc ription of the final-state interaction of the proton, a microscopic nuclear matter calculation of the damping of this proton, and high-quality quasihole wave functions for $p$-shell nucleons in ${}^{16}{rm O}$. Good agreement with the $Q^2 = 0.8$ (GeV/$c)^2$ data is obtained when spectroscopic factors are employed which are identical to those required to describe earlier low $Q^2$ experiments.
The charge and magnetic form factors, FC and FM, of 3He have been extracted in the kinematic range 25 fm-2 < Q2 < 61 fm-2 from elastic electron scattering by detecting 3He recoil nuclei and electrons in coincidence with the High Resolution Spectromet ers of the Hall A Facility at Jefferson Lab. The measurements are indicative of a second diffraction minimum for the magnetic form factor, which was predicted in the Q2 range of this experiment, and of a continuing diffractive structure for the charge form factor. The data are in qualitative agreement with theoretical calculations based on realistic interactions and accurate methods to solve the three-body nuclear problem.
We have measured the 3He(e,epp)n reaction at 2.2 GeV over a wide kinematic range. The kinetic energy distribution for `fast nucleons (p > 250 MeV/c) peaks where two nucleons each have 20% or less, and the third nucleon has most of the transferred ene rgy. These fast pp and pn pairs are back-to-back with little momentum along the three-momentum transfer, indicating that they are spectators. Experimental and theoretical evidence indicates that we have measured distorted two-nucleon momentum distributions by striking the third nucleon and detecting the spectator correlated pair.
The electron-target-asymmetries A_parallel and A_perpendicular with target spin parallel and perpendicular to the momentum transfer q were measured for both the two-- and three-body breakup of 3He in the 3He(e,ep)-reaction. Polarized electrons were s cattered off polarized 3He in the quasielastic regime in parallel kinematics with the scattered electron and the knocked-out proton detected using the Three-Spectrometer-Facility at MAMI. The results are compared to Faddeev calculations which take into account Final State Interactions as well as Meson Exchange Currents. The experiment confirms the prediction of a large effect of Final State Interactions in the asymmetry of the three-body breakup and of an almost negligible one for the two-body breakup.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا