ﻻ يوجد ملخص باللغة العربية
The one- and the two-particle propagators for an infinite non-interacting Fermi system are studied as functions of space-time coordinates. Their behaviour at the origin and in the asymptotic region is discussed, as is their scaling in the Fermi momentum. Both propagators are shown to have a divergence at equal times. The impact of the interaction among the fermions on their momentum distribution, on their pair correlation function and, hence, on the Coulomb sum rule is explored using a phenomenological model. Finally the problem of how the confinement is reflected in the momentum distribution of the systems constituents is briefly addressed.
Recently, we proposed a new method to calculate meson propagators in the large $N$ limit from twisted space-time reduced model. In this note, we give simulation details for obtaining meson spectra and discuss the smearing technique which should impro
With the introduction of a spectral representation, the Schwinger-Dyson equation (SDE) for the fermion propagator is formulated in Minkowski space in QED. After imposing the on-shell renormalization conditions, analytic solutions for the fermion prop
Any practical application of the Schwinger-Dyson equations to the study of $n$-point Greens functions of a field theory requires truncations, the best known being finite order perturbation theory. Strong coupling studies require a different approach.
We derive the gauge covariance requirement imposed on the QED fermion-photon three-point function within the framework of a spectral representation for fermion propagators. When satisfied, such requirement ensures solutions to the fermion propagator
The side jump in the anomalous Lorentz transformation, arising from the spin-orbit interactions, plays important roles in various intriguing physics, such as chiral vortical effects and spin polarization. In this work, the side jump of the spin-half