ﻻ يوجد ملخص باللغة العربية
We present time-resolved Kerr rotation measurements of electron spin dynamics in a GaAs/AlGaAs heterojunction system that contains a high-mobility two-dimensional electron gas (2DEG). Due to the complex layer structure of this material the Kerr rotation signals contain information from electron spins in three different layers: the 2DEG layer, a GaAs epilayer in the heterostructure, and the underlying GaAs substrate. The 2DEG electrons can be observed at low pump intensities, using that they have a less negative g-factor than electrons in bulk GaAs regions. At high pump intensities, the Kerr signals from the GaAs epilayer and the substrate can be distinguished when using a barrier between the two layers that blocks intermixing of the two electron populations. This allows for stronger pumping of the epilayer, which results in a shift of the effective g-factor. Thus, three populations can be distinguished using differences in g-factor. We support this interpretation by studying how the spin dynamics of each population has its unique dependence on temperature, and how they correlate with time-resolved reflectance signals.
This paper reports on the observation and analysis of magnetotransport phenomena in the nonlinear differential resistance $r_{xx}=dV_{xx}/dI$ of high-mobility InGaAs/InP and GaAs/AlGaAs Hall bar samples driven by direct current, $Idc$. Specifically,
We present a self-consistent Schroedinger-Poisson scheme for simulation of electrostatic quantum dots defined in gated two-dimensional electron gas formed at n-AlGaAs/GaAs heterojunction. The computational method is applied to a quantitative descript
The effect of a lateral electric current on the photoluminescence H-band of an AlGaAs/GaAs heterostructure is investigated. The photoluminescence intensity and optical orientation of electrons contributing to the H-band are studied by means of contin
We present a method to create spin-polarized beams of ballistic electrons in a two-dimensional electron system in the presence of spin-orbit interaction. Scattering of a spin-unpolarized injected beam from a lithographic barrier leads to the creation
We measure the Hall conductivity of a two-dimensional electron gas formed at a GaAs/AlGaAs heterojunction in the terahertz regime close to the cyclotron resonance frequency by employing a highly sensitive Faraday rotation method coupled with electric