ﻻ يوجد ملخص باللغة العربية
We describe a new type of spatially periodic structure (lattice models): a polaritonic crystal (PolC) formed by a two-dimensional lattice of trapped two-level atoms interacting with quantised electromagnetic field in a cavity (or in a one-dimensional array of tunnelling-coupled microcavities), which allows polaritons to be fully localised. Using a one-dimensional polaritonic crystal as an example, we analyse conditions for quantum degeneracy of a low-branch polariton gas and those for quantum optical information recording and storage.
Coherent diffusion pertains to the motion of atomic dipoles experiencing frequent collisions in vapor while maintaining their coherence. Recent theoretical and experimental studies on the effect of coherent diffusion on key Raman processes, namely Ra
We propose a practical scheme to observe the polaritonic quantum phase transition (QPT) from the superfluid (SF) to Bose-glass (BG) to Mott-insulator (MI) states. The system consists of a two-dimensional array of photonic crystal microcavities doped
We formulate a theory of slow polaritons in atomic gases and apply it to the slowing down, storing, and redirecting of laser pulses in an EIT medium. The normal modes of the coupled matter and radiation are determined through a full diagonalization o
We study exciton-polaritons in a two-dimensional Lieb lattice of micropillars. The energy spectrum of the system features two flat bands formed from $S$ and $P_{x,y}$ photonic orbitals, into which we trigger bosonic condensation under high power exci
Trapped ions are a well-studied and promising system for the realization of a scalable quantum computer. Faster quantum gates would greatly improve the applicability of such a system and allow for greater flexibility in the number of calculation step