ترغب بنشر مسار تعليمي؟ اضغط هنا

Type-1.5 Superconducting State from an Intrinsic Proximity Effect in Two-Band Superconductors

232   0   0.0 ( 0 )
 نشر من قبل Egor Babaev
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that in multiband superconductors even small interband proximity effect can lead to a qualitative change in the interaction potential between superconducting vortices by producing long-range intervortex attraction. This type of vortex interaction results in unusual response to low magnetic fields leading to phase separation into domains of a two-component Meissner states and vortex droplets.



قيم البحث

اقرأ أيضاً

In the usual Ginzburg-Landau theory the critical value of the ratio of two fundamental length scales in the thery $kappa_c=1/sqrt{2}$ separates regimes of type-I and type-II superconductivity. The latter regime possess thermodynamically stable vortex excitations which interact with each other repulsively and tend to form vortex lattices. It was shown in [5] that this dichotomy in broken in U(1)xU(1) Ginzburg-Landau models which possess three fundamental length scales which results in the existence of a distinct phase with vortex excitations which interact attractively at large length scales and repulsively at shorter distances. Here we briefly review these results in particular discussing the role of interband Josephson coupling and the case where only one band is superconducting while superconductivity in another band is induced by interband proximity effect. The report is partially based on E. Babaev, J. Carlstrom, J. M. Speight arXiv:0910.1607.
We demonstrate the existence of a novel superconducting state in high quality two-component MgB2 single crystalline superconductors where a unique combination of both type-1 (kappa_1 < 0.707) and type-2 (kappa_2 > 0.707) superconductor conditions is realized for the two components of the order parameter. This condition leads to a vortex-vortex interaction attractive at long distances and repulsive at short distances, which stabilizes unconventional stripe- and gossamer-like vortex patterns that we have visualized in this type-1.5 superconductor using Bitter decoration and also reproduced in numerical simulations.
The proximity effect from a spin-triplet $p_x$-wave superconductor to a dirty normal-metal has been shown to result in various unusual electromagnetic properties, reflecting a cooperative relation between topologically protected zero-energy quasipart icles and odd-frequency Cooper pairs. However, because of a lack of candidate materials for spin-triplet $p_x$-wave superconductors, observing this effect has been difficult. In this paper, we demonstrate that the anomalous proximity effect, which is essentially equivalent to that of a spin-triplet $p_x$-wave superconductor, can occur in a semiconductor/high-$T_c$ cuprate superconductor hybrid device in which two potentials coexist: a spin-singlet $d$-wave pair potential and a spin--orbit coupling potential sustaining the persistent spin-helix state. As a result, we propose an alternative and promising route to observe the anomalous proximity effect related to the profound nature of topologically protected quasiparticles and odd-frequency Cooper pairs.
We demonstrate existence of non-pairwise interaction forces between vortices in multicomponent and layered superconducting systems. That is, in contrast to most common models, the interactions in a group of such vortices is not a universal superposit ion of Coulomb or Yukawa forces. Next we consider the properties of vortex clusters in Semi-Meissner state of type-1.5 two-component superconductors. We show that under certain condition non-pairwise forces can contribute to formation of very complex vortex states in type-1.5 regimes.
The microscopic theory of Josephson effect in point contacts between two-band superconductors is developed. The general expression for the Josephson current, which is valid for arbitrary temperatures, is obtained. We considered the dirty superconduct ors with interband scattering, which produces the coupling of the Josephson currents between different bands. The influence of phase shifts and interband scattering rates in the banks is analyzed near critical temperature Tc. It is shown that for some values of parameters the critical current can be negative, which means the pi-junction behavior.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا