ترغب بنشر مسار تعليمي؟ اضغط هنا

The Puzzling Frequencies of CEMP and NEMP Stars

232   0   0.0 ( 0 )
 نشر من قبل Onno Pols
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results of binary population simulations of carbon- and nitrogen-enhanced metal-poor (CEMP and NEMP) stars. We show that the observed paucity of very nitrogen-rich stars puts strong constraints on possible modifications of the initial mass function at low metallicity.



قيم البحث

اقرأ أيضاً

We present a comparison of the frequencies of carbon-enhanced metal-poor (CEMP) giant and main-sequence turnoff stars, selected from the Sloan Digital Sky Survey and the Sloan Extension for Galactic Understanding and Exploration, with predictions fro m asymptotic giant-branch (AGB) mass-transfer models. We consider two initial mass functions (IMFs)-a Salpeter IMF, and a mass function with a characteristic mass of 10 solar mass. These comparisons indicate good agreement between the observed CEMP frequencies for stars with [Fe/H] > -1.5 and a Salpeter IMF, but not with an IMF having a higher characteristic mass. Thus, while the adopted AGB model works well for low-mass progenitor stars, it does not do so for high-mass progenitors. Our results imply that the IMF shifted from high- to low-mass dominated in the early history of the Milky Way, which appears to have occurred at a chemical time between [Fe/H] = -2.5 and [Fe/H] = -1.5. The corrected CEMP frequency for the turnoff stars with [Fe/H] < -3.0 is much higher than the AGB model prediction from the high-mass IMF, supporting the previous assertion that one or more additional mechanisms, not associated with AGB stars, are required for the production of carbon-rich material below [Fe/H] = -3.0. [abridged]
Swan bands - characteristic molecular absorption features of the C$_2$ molecule - are a spectroscopic signature of carbon-enhanced stars. They can also be used to identify carbon-enhanced metal-poor (CEMP) stars. The GALAH (GALactic Archaeology with Hermes) is a magnitude-limited survey of stars producing high-resolution, high signal-to-noise spectra. We used 627,708 GALAH spectra to search for carbon-enhanced stars with a supervised and unsupervised classification algorithm, relying on the imprint of the Swan bands. We identified 918 carbon-enhanced stars, including 12 already described in the literature. An unbiased selection function of the GALAH survey allows us to perform a population study of carbon-enhanced stars. Most of them are giants, out of which we find 28 CEMP candidates. A large fraction of our carbon-enhanced stars with repeated observations show variation in radial velocity, hinting that there is a large fraction of variables among them. 32 of the detected stars also show strong Lithium enhancement in their spectra.
Deriving the metallicity, [Fe/H], in low-resolution spectra of carbon-enhanced metal-poor (CEMP) stars is a tedious task that, owing to the large number of line blends, often leads to uncertainties on [Fe/H] exceeding 0.25dex. The CEMP stars increase in number with decreasing [Fe/H] and some of these are known to be bona fide second generation halo stars. Hence, knowing their [Fe/H] is important for tracing the formation and chemical evolution of the Galaxy. Here, we aim to improve the [Fe/H] measurements in low-resolution spectra by avoiding issues related to blends. We improve our chemical tagging in such spectra at low metallicities. We developed an empirical way of deriving [Fe/H] in CEMP (and C-normal) stars that relates the equivalent width (EW) of strong lines, which remain detectable in lower-resolution, metal-poor spectra. The best [Fe/H] tracers are found to be Cr I and Ni I, which both show strong transitions in spectral regions that are free of molecular bands (between ~5200-6800A, a region accessible to most surveys). We derive different relations for dwarfs and giants. The relations are valid in the ranges ~-3<[Fe/H]<-0.5 and 10<EW<800mA (Cr) or [Fe/H]>-3.2 and EW>5mA (Ni), depending on the element and line as well as the stellar evolutionary stage. The empirical relations are valid for both CEMP and C-normal stars and have been proven to be accurate tracers in a sample of ~400 stars (mainly giants). The metallicities are accurate to within ~0.2 depending on the sample and resolution, and the empirical relations are robust to within 0.05-0.1dex. Our relations will improve the metallicity determination in future surveys, which will encounter a large number of CEMP stars, and will greatly speed up the process of determining [Fe/H] as the EWs only need to be measured in two or three lines in relatively clean regions compared to dealing with numerous blended Fe lines. Abrigded.
The OGLE project led to discovery of earlier unknown forms of multiperiodic pulsation in Cepheids. Often, the observed periods may be explained in terms of simultaneous excitation of two or rarely three radial modes. However, a secondary variability at about 0.6 of the dominant period, detected in a number of the first overtone (1O) pulsators inhabiting the Magellanic Clouds, seems to require a different explanation. After reviewing a possibility of explaining this signal in terms of radial and nonradial modes, I find that only unstable modes that may reproduce the observed period ratio are f-modes of high angular degrees (l=42-50). I discuss in detail the driving effect behind the instability and show that it is not the familiar opacity mechanism. Finally, I emphasize the main difficulty of this explanation, which requires high intrinsic amplitudes implying large broadening of spectral line.
CEMP-$r/s$ stars are metal-poor stars with enhanced abundances of carbon and heavy elements associated with the slow ($s$-) and rapid ($r$-) neutron-capture process. It is believed that carbon and $s$-elements were accreted from the wind of an AGB pr imary star, a scenario that is generally accepted to explain the formation of CEMP stars that are only enhanced in $s$-elements (CEMP-$s$ stars). The origin of $r$-element-enrichment in CEMP-$r/s$ stars is debated and many formation scenarios have been put forward. We aim to determine the likelihood of the scenarios proposed to explain the formation of CEMP-$r/s$ stars. We calculate the frequency of CEMP-$r/s$ stars among CEMP-$s$ stars for a variety of scenarios, and we compare it with that determined from an observed sample of CEMP-$r/s$ stars collected from the literature. The theoretical frequency of CEMP-$r/s$ stars predicted in most scenarios underestimates the observed ratio by at least a factor of 5. If the enrichments in $s$- and $r$-elements are independent, the model ratio of CEMP-$r/s$ to CEMP-$s$ stars is about 22%, that is approximately consistent with the lowest estimate of the observed ratio. However, this model predicts that about one third of all carbon-normal stars have [Ba/Fe] and [Eu/Fe] higher than 1, and that 40% of all CEMP stars have [Ba/Eu]$le0$. Stars with these properties are at least ten times rarer in our observed sample. The $intermediate$ or $i$-process, which is supposedly active in some circumstances during the AGB phase, could provide an explanation of the origin of CEMP-$r/s$ stars, similar to that of CEMP-$s$ stars, in the context of wind mass accretion in binary systems. Further calculations of the nucleosynthesis of the $i$-process and of the detailed evolution of late AGB stars are needed to investigate if this scenario predicts a CEMP-$r/s$ star frequency consistent with the observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا