ترغب بنشر مسار تعليمي؟ اضغط هنا

A Meandering Inflaton

134   0   0.0 ( 0 )
 نشر من قبل Jiajun Xu
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

If the cosmological inflationary scenario took place in the cosmic landscape in string theory, the inflaton, the scalar mode responsible for inflation, would have meandered in a complicated multi-dimensional potential. We show that this meandering property naturally leads to many e-folds of inflation, a necessary condition for a successful inflationary scenario. This behavior also leads to fluctuations in the primordial power spectrum of the cosmic microwave background radiation, which may be detected in a near future cosmic variance limited experiment like PLANCK.



قيم البحث

اقرأ أيضاً

It was recently proposed that a field theory cannot be consistent with quantum gravity if it allows a mode shorter than the Planck length to exit the Hubble horizon. This is called the Trans-Planckian Censorship Conjecture (TCC). We discuss the impli cations of the TCC on the possible shape of the inflaton potential in single-field slow-roll inflation. We point out that (1) there is generically an initial condition in which the total e-folding number $N_text{total}$ is doubled or more compared to the e-folds necessary for the cosmic microwave background fluctuations, and (2) a sizable negative running of spectral index is generically expected to make $N_text{total}$ small. In concrete setups, we find a stringent constraint on the inflationary energy scale, $V_text{inf}^{1/4} < mathcal{O}(10) , text{TeV}$ with $r < mathcal{O}(10^{-50})$, and the running parameter is bounded above as $alpha_text{s} lesssim - 4 times 10^{-3}$.
We show that inflation can naturally occur at a finite temperature T>H that is sustained by dissipative effects, when the inflaton field corresponds to a pseudo Nambu-Goldstone boson of a broken gauge symmetry. Similarly to Little Higgs scenarios for electroweak symmetry breaking, the flatness of the inflaton potential is protected against both quadratic divergences and the leading thermal corrections. We show that, nevertheless, nonlocal dissipative effects are naturally present and are able to sustain a nearly thermal bath of light particles despite the accelerated expansion of the Universe. As an example, we discuss the dynamics of chaotic warm inflation with a quartic potential and show that the associated observational predictions are in very good agreement with the latest Planck results. This model constitutes the first realization of warm inflation requiring only a small number of fields; in particular, the inflaton is directly coupled to just two light fields.
We construct the gauge invariant free action for cosmological perturbations for the nonminimally coupled inflaton field in the Jordan frame. For this the phase space formalism is used, which keeps track of all the dynamical and constraint fields. We perform explicit conformal transformations to demonstrate the physical equivalence between the Jordan and Einstein frames at the level of quadratic perturbations. We show how to generalize the formalism to the case of a more complicated scalar sector with an internal symmetry, such as Higgs inflation. This work represents a first step in developing gauge invariant perturbation theory for nonminimally coupled inflationary models.
We present a unified model where the same scalar field can drive inflation and account for the present dark matter abundance. This scenario is based on the incomplete decay of the inflaton field into right-handed neutrino pairs, which is accomplished by imposing a discrete interchange symmetry on the inflaton and on two of the right-handed neutrinos. We show that this can lead to a successful reheating of the Universe after inflation, while leaving a stable inflaton remnant at late times. This remnant may be in the form of WIMP-like inflaton particles or of an oscillating inflaton condensate, depending on whether or not the latter evaporates and reaches thermal equilibrium with the cosmic plasma. We further show that this scenario is compatible with generating light neutrino masses and mixings through the seesaw mechanism, predicting at least one massless neutrino, and also the observed baryon asymmetry via thermal leptogenesis.
92 - Wen Yin 2021
We propose a novel scenario to explain the small cosmological constant (CC) by a finely tuned inflaton potential. The tuned shape is stable under radiative corrections, and our setup is technically natural. The peculiar po- tential approximately sati sfies the following conditions: the inflation is eternal if CC is positive, and not eternal if CC is negative. By introducing a slowly varying CC from a positive value to a negative value, the dominant volume of the Universe after the inflation turns out to have a vanishingly small CC. The scenario does not require eternal inflation but the e-folding number is exponentially large and the inflation scale should be low enough. The scenario can have a consistent thermal history, but the present equation of state of the Universe is predicted to differ from the prediction of the {Lambda}CDM model. A concrete model with a light scalar field is studied.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا