ﻻ يوجد ملخص باللغة العربية
We use Rices formulas in order to compute the moments of some level functionals which are linked to problems in oceanography and optics. For instance, we consider the number of specular points in one or two dimensions, the number of twinkles, the distribution of normal angle of level curves and the number or the length of dislocations in random wavefronts. We compute expectations and in some cases, also second moments of such functionals. Moments of order greater than one are more involved, but one needs them whenever one wants to perform statistical inference on some parameters in the model or to test the model itself. In some case we are able to use these computations to obtain a Central Limit Theorem.
We study functional inequalities (Poincare, Cheeger, log-Sobolev) for probability measures obtained as perturbations. Several explicit results for general measures as well as log-concave distributions are given.The initial goal of this work was to ob
In a 2006 article (cite{A1}), Allouba gave his quadratic covariation differentiation theory for It^os integral calculus. He defined the derivative of a semimartingale with respect to a Brownian motion as the time derivative of their quadratic covaria
In this paper we will establish some double-angle formulas related to the inverse function of $int_0^x dt/sqrt{1-t^6}$. This function appears in Ramanujans Notebooks and is regarded as a generalized version of the lemniscate function.
We have obtained the explic
We study the nonlinear stochastic heat equation driven by space-time white noise in the case that the initial datum $u_0$ is a (possibly signed) measure. In this case, one cannot obtain a mild random-field solution in the usual sense. We prove instea