ترغب بنشر مسار تعليمي؟ اضغط هنا

The far future of exoplanet direct characterization

148   0   0.0 ( 0 )
 نشر من قبل Schneider
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this outlook we describe what could be the next steps of the direct characterization of habitable exoplanets after first the medium and large mission projects and investigate the benefits of the spectroscopic and direct imaging approaches. We show that after third and fourth generation missions foreseeable for the next 100 years, we will face a very long era before being able to see directly the morphology of extrasolar organisms.



قيم البحث

اقرأ أيضاً

Diffraction fundamentally limits our ability to image and characterize exoplanets. Current and planned coronagraphic searches for exoplanets are making incredible strides but are fundamentally limited by the inner working angle of a few lambda/D. Som e crucial topics, such as demographics of exoplanets within the first 50 Myr and the infrared characterization of terrestrial planets, are beyond the reach of the single aperture angular resolution for the foreseeable future. Interferometry offers some advantages in exoplanet detection and characterization and we explore in this white paper some of the potential scientific breakthroughs possible. We demonstrate here that investments in exoplanet interferometry could open up new possibilities for speckle suppression through spatial coherence, a giant boost in astrometric precision for determining exoplanet orbits, ability to take a census of young giant exoplanets (clusters <50 Myr age), and an unrivaled potential for infrared nulling from space to detect terrestrial planets and search for atmospheric biomarkers. All signs point to an exciting future for exoplanets and interferometers, albeit a promise that will take decades to fulfill.
Provided that sufficient resources are deployed, we can look forward to an extraordinary future in which we will characterize potentially habitable planets. Until now, we have had to base interpretations of observations on habitability hypotheses tha t have remained untested. To test these theories observationally, we propose a statistical comparative planetology approach to questions of planetary habitability. The key objective of this approach will be to make quick and cheap measurements of critical planetary characteristics on a large sample of exoplanets, exploiting statistical marginalization to answer broad habitability questions. This relaxes the requirement of obtaining multiple types of data for a given planet, as it allows us to test a given hypothesis from only one type of measurement using the power of an ensemble. This approach contrasts with a systems science approach, where a few planets would be extensively studied with many types of measurements. A systems science approach is associated with a number of difficulties which may limit overall scientific return, including: the limited spectral coverage and noise of instruments, the diversity of exoplanets, and the extensive list of potential false negatives and false positives. A statistical approach could also be complementary to a systems science framework by providing context to interpret extensive measurements on planets of particular interest. We strongly recommend future missions with a focus on exoplanet characterization, and with the capability to study large numbers of planets in a homogenous way, rather than exclusively small, intense studies directed at a small sample of planets.
Exoplanet science promises a continued rapid accumulation of new observations in the near future, energizing a drive to understand and interpret the forthcoming wealth of data to identify signs of life beyond our Solar System. The large statistics of exoplanet samples, combined with the ambiguity of our understanding of universal properties of life and its signatures, necessitate a quantitative framework for biosignature assessment Here, we introduce a Bayesian framework for guiding future directions in life detection, which permits the possibility of generalizing our search strategy beyond biosignatures of known life. The Bayesian methodology provides a language to define quantitatively the conditional probabilities and confidence levels of future life detection and, importantly, may constrain the prior probability of life with or without positive detection. We describe empirical and theoretical work necessary to place constraints on the relevant likelihoods, including those emerging from stellar and planetary context, the contingencies of evolutionary history and the universalities of physics and chemistry. We discuss how the Bayesian framework can guide our search strategies, including determining observational wavelengths or deciding between targeted searches or larger, lower resolution surveys. Our goal is to provide a quantitative framework not entrained to specific definitions of life or its signatures, which integrates the diverse disciplinary perspectives necessary to confidently detect alien life.
Precise and, if possible, accurate characterization of exoplanets cannot be dissociated from the characterization of their host stars. In this chapter we discuss different methods and techniques used to derive fundamental properties and atmospheric p arameters of exoplanet-host stars. The main limitations, advantages and disadvantages, as well as corresponding typical measurement uncertainties of each method are presented.
122 - J. Kasting , W. Traub , A. Roberge 2009
Over 300 extrasolar planets (exoplanets) have been detected orbiting nearby stars. We now hope to conduct a census of all planets around nearby stars and to characterize their atmospheres and surfaces with spectroscopy. Rocky planets within their sta rs habitable zones have the highest priority, as these have the potential to harbor life. Our science goal is to find and characterize all nearby exoplanets; this requires that we measure the mass, orbit, and spectroscopic signature of each one at visible and infrared wavelengths. The techniques for doing this are at hand today. Within the decade we could answer long-standing questions about the evolution and nature of other planetary systems, and we could search for clues as to whether life exists elsewhere in our galactic neighborhood.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا