ترغب بنشر مسار تعليمي؟ اضغط هنا

On noncontractible compacta with trivial homology and homotopy groups

223   0   0.0 ( 0 )
 نشر من قبل Du\\v{s}an Repov\\v{s}
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We construct an example of a Peano continuum $X$ such that: (i) $X$ is a one-point compactification of a polyhedron; (ii) $X$ is weakly homotopy equivalent to a point (i.e. $pi_n(X)$ is trivial for all $n geq 0$); (iii) $X$ is noncontractible; and (iv) $X$ is homologically and cohomologically locally connected (i.e. $X$ is a $HLC$ and $clc$ space). We also prove that all classical homology groups (singular, v{C}ech, and Borel-Moore), all classical cohomology groups (singular and v{C}ech), and all finite-dimensional Hawaiian groups of $X$ are trivial.



قيم البحث

اقرأ أيضاً

166 - Sergey A. Melikhov 2009
Steenrod homotopy theory is a framework for doing algebraic topology on general spaces in terms of algebraic topology of polyhedra; from another viewpoint, it studies the topology of the lim^1 functor (for inverse sequences of groups). This paper is primarily concerned with the case of compacta, in which Steenrod homotopy coincides with strong shape. We attempt to simplify foundations of the theory and to clarify and improve some of its major results. Using geometric tools such as Milnors telescope compactification, comanifolds (=mock bundles) and the Pontryagin-Thom Construction, we obtain new simple proofs of results by Barratt-Milnor; Cathey; Dydak-Segal; Eda-Kawamura; Edwards-Geoghegan; Fox; Geoghegan-Krasinkiewicz; Jussila; Krasinkiewicz-Minc; Mardesic; Mittag-Leffler/Bourbaki; and of three unpublished results by Shchepin. An error in Lisitsas proof of the Hurewicz theorem in Steenrod homotopy is corrected. It is shown that over compacta, R.H.Foxs overlayings are same as I.M.James uniform covering maps. Other results include: - A morphism between inverse sequences of countable (possibly non-abelian) groups that induces isomorphisms on inverse and derived limits is invertible in the pro-category. This implies the Whitehead theorem in Steenrod homotopy, thereby answering two questions of A.Koyama. - If X is an LC_{n-1} compactum, n>0, its n-dimensional Steenrod homotopy classes are representable by maps S^nto X, provided that X is simply connected. The assumption of simply-connectedness cannot be dropped by a well-known example of Dydak and Zdravkovska. - A connected compactum is Steenrod connected (=pointed 1-movable) iff every its uniform covering space has countably many uniform connected components.
We survey computations of stable motivic homotopy groups over various fields. The main tools are the motivic Adams spectral sequence, the motivic Adams-Novikov spectral sequence, and the effective slice spectral sequence. We state some projects for future study.
90 - Daniel A. Ramras 2018
Let $M$ be a topological monoid with homotopy group completion $Omega BM$. Under a strong homotopy commutativity hypothesis on $M$, we show that $pi_k (Omega BM)$ is the quotient of the monoid of free homotopy classes $[S^k, M]$ by its submonoid of n ullhomotopic maps. We give two applications. First, this result gives a concrete description of the Lawson homology of a complex projective variety in terms of point-wise addition of spherical families of effective algebraic cycles. Second, we apply this result to monoids built from the unitary, or general linear, representation spaces of discrete groups, leading to results about lifting continuous families of characters to continuous families of representations.
220 - Daniel G. Davis 2013
If K is a discrete group and Z is a K-spectrum, then the homotopy fixed point spectrum Z^{hK} is Map_*(EK_+, Z)^K, the fixed points of a familiar expression. Similarly, if G is a profinite group and X is a discrete G-spectrum, then X^{hG} is often gi ven by (H_{G,X})^G, where H_{G,X} is a certain explicit construction given by a homotopy limit in the category of discrete G-spectra. Thus, in each of two common equivariant settings, the homotopy fixed point spectrum is equal to the fixed points of an explicit object in the ambient equivariant category. We enrich this pattern by proving in a precise sense that the discrete G-spectrum H_{G,X} is just a profinite version of Map_*(EK_+, Z): at each stage of its construction, H_{G,X} replicates in the setting of discrete G-spectra the corresponding stage in the formation of Map_*(EK_+, Z) (up to a certain natural identification).
The first aim of this paper is to study the $p$-local higher homotopy commutativity of Lie groups in the sense of Sugawara. The second aim is to apply this result to the $p$-local higher homotopy commutativity of gauge groups. Although the higher hom otopy commutativity of Lie groups in the sense of Williams is already known, the higher homotopy commutativity in the sense of Sugawara is necessary for this application. The third aim is to resolve the $5$-local higher homotopy non-commutativity problem of the exceptional Lie group $mathrm{G}_2$, which has been open for a long time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا