ترغب بنشر مسار تعليمي؟ اضغط هنا

Update on onium masses with three flavors of dynamical quarks

167   0   0.0 ( 0 )
 نشر من قبل Steven Gottlieb
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We update results presented at Lattice 2005 on charmonium masses. New ensembles of gauge configurations with 2+1 flavors of improved staggered quarks have been analyzed. Statistics have been increased for other ensembles. New results are also available for P-wave mesons and for bottomonium on selected ensembles.



قيم البحث

اقرأ أيضاً

We report on our study of two-flavor full QCD on anisotropic lattices using $O(a)$-improved Wilson quarks coupled with an RG-improved glue. The bare gauge and quark anisotropies corresponding to the renormalized anisotropy $xi=a_s/a_t = 2$ are determ ined as functions of $beta$ and $kappa$, which covers the region of spatial lattice spacings $a_sapprox 0.28$--0.16 fm and $m_{PS}/m_Vapprox 0.6$--0.9. The calibrations of the bare anisotropies are performed with the Wilson loop and the meson dispersion relation at 4 lattice cutoffs and 5--6 quark masses. Using the calibration results we calculate the meson mass spectrum and the Sommer scale $r_0$. We confirm that the values of $r_0$ calculated for the calibration using pseudo scalar and vector meson energy momentum dispersion relation coincide in the continuum limit within errors. This work serves to lay ground toward studies of heavy quark systems and thermodynamics of QCD including the extraction of the equation of state in the continuum limit using Wilson-type quark actions.
We present updated results of the CP-PACS calculation of the light hadron spectrum in $N_{rm f}=2$ full QCD. Simulations are made with an RG-improved gauge action and a tadpole-improved clover quark action for sea quark masses corresponding to $m_{rm PS}/m_{rm V} approx 0.8$--0.6 and the lattice spacing $a=0.22$--0.09 fm. A comparison of the full QCD spectrum with new quenched results, obtained with the same improved action, shows clearly the existence of sea quark effects in vector meson masses. Results for light quark masses in $N_{rm f}=2$ QCD are also presented.
52 - C. Aubin 2004
As one test of the validity of the staggered-fermion fourth-root determinant trick, we examine the suppression of the topological susceptibility of the QCD vacuum in the limit of small quark mass. The suppression is sensitive to the number of light s ea quark flavors. Our study is done in the presence of 2+1 flavors of dynamical quarks in the improved staggered fermion formulation. Variance-reduction techniques provide better control of statistical errors. New results from staggered chiral perturbation theory account for taste-breaking effects in the low-quark mass behavior of the susceptibility, thereby reducing scaling violations from this source. Measurements over a range of quark masses at two lattice spacings permit a rough continuum extrapolation to remove the remaining lattice artifacts. The results are consistent with chiral perturbation theory with the correct flavor counting.
We report on a study of QCD thermodynamics with three flavors of quarks, using a Symanzik improved gauge action and the Asqtad O(a^2) improved staggered quark action. Simulations were carried out with lattice spacings 1/4T, 1/6T and 1/8T both for thr ee degenerate quarks with masses less than or equal to the strange quark mass, m_s, and for degenerate up and down quarks with masses in the range 0.1 m_s leq m_{u,d} leq 0.6 m_s, and the strange quark mass fixed near its physical value. We present results for standard thermodynamics quantities, such as the Polyakov loop, the chiral order parameter and its susceptibility. For the quark masses studied to date we find a rapid crossover rather than a bona fide phase transition. We have carried out the first calculations of quark number susceptibilities with three flavors of sea quarks. These quantities are of physical interest because they are related to event-by-event fluctuations in heavy ion collision experiments. Comparison of susceptibilities at different lattice spacings show that our results are close to the continuum values.
We study the dynamics of SU(2) gauge theory with NF=6 Dirac fermions by means of lattice simulation to investigate if they are appropriate to realization of electroweak symmetry breaking. The discrete analogue of beta function for the running couplin g constant defined under the Schroedinger functional boundary condition are computed on the lattices up to linear size of L/a=24 and preclude the existence of infrared fixed point below 7.6. Gluonic observables such as heavy quark potential, string tension, Polyakov loop suggest that the target system is in the confining phase even in the massless quark limit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا