ترغب بنشر مسار تعليمي؟ اضغط هنا

Robust Neutrino Constraints by Combining Low Redshift Observations with the CMB

258   0   0.0 ( 0 )
 نشر من قبل Beth Reid
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We illustrate how recently improved low-redshift cosmological measurements can tighten constraints on neutrino properties. In particular we examine the impact of the assumed cosmological model on the constraints. We first consider the new HST H0 = 74.2 +/- 3.6 measurement by Riess et al. (2009) and the sigma8*(Omegam/0.25)^0.41 = 0.832 +/- 0.033 constraint from Rozo et al. (2009) derived from the SDSS maxBCG Cluster Catalog. In a Lambda CDM model and when combined with WMAP5 constraints, these low-redshift measurements constrain sum mnu<0.4 eV at the 95% confidence level. This bound does not relax when allowing for the running of the spectral index or for primordial tensor perturbations. When adding also Supernovae and BAO constraints, we obtain a 95% upper limit of sum mnu<0.3 eV. We test the sensitivity of the neutrino mass constraint to the assumed expansion history by both allowing a dark energy equation of state parameter w to vary, and by studying a model with coupling between dark energy and dark matter, which allows for variation in w, Omegak, and dark coupling strength xi. When combining CMB, H0, and the SDSS LRG halo power spectrum from Reid et al. 2009, we find that in this very general model, sum mnu < 0.51 eV with 95% confidence. If we allow the number of relativistic species Nrel to vary in a Lambda CDM model with sum mnu = 0, we find Nrel = 3.76^{+0.63}_{-0.68} (^{+1.38}_{-1.21}) for the 68% and 95% confidence intervals. We also report prior-independent constraints, which are in excellent agreement with the Bayesian constraints.



قيم البحث

اقرأ أيضاً

Updated constraints on dark matter cross section and mass are presented combining CMB power spectrum measurements from Planck, WMAP9, ACT, and SPT as well as several low-redshift datasets (BAO, HST, supernovae). For the CMB datasets, we combine WMAP9 temperature and polarization data for l <= 431 with Planck temperature data for 432 < l < 2500, ACT and SPT data for l > 2500, and Planck CMB four-point lensing measurements. We allow for redshift-dependent energy deposition from dark matter annihilation by using a `universal energy absorption curve. We also include an updated treatment of the excitation, heating, and ionization energy fractions, and provide updated deposition efficiency factors (f_eff) for 41 different dark matter models. Assuming perfect energy deposition (f_eff = 1) and a thermal cross section, dark matter masses below 26 GeV are excluded at the 2-sigma level. Assuming a more generic efficiency of f_eff = 0.2, thermal dark matter masses below 5 GeV are disfavored at the 2-sigma level. These limits are a factor of ~2 improvement over those from WMAP9 data alone. These current constraints probe, but do not exclude, dark matter as an explanation for reported anomalous indirect detection observations from AMS-02/PAMELA and the Fermi Gamma-ray Inner Galaxy data. They also probe relevant models that would explain anomalous direct detection events from CDMS, CRESST, CoGeNT, and DAMA, as originating from a generic thermal WIMP. Projected constraints from the full Planck release should improve the current limits by another factor of ~2, but will not definitely probe these signals. The proposed CMB Stage IV experiment will more decisively explore the relevant regions and improve upon the Planck constraints by another factor of ~2.
66 - Aoife Boyle 2018
We perform a thorough examination of the neutrino mass ($M_ u$) constraints achievable by combining future spectroscopic galaxy surveys with cosmic microwave background (CMB) experiments, focusing on the contribution of CMB lensing and galaxy-CMB len sing. CMB lensing can help by breaking the $M_ u$-curvature degeneracy when combined with baryon acoustic oscillation (BAO)-only measurements, but we demonstrate this combination wastes a great deal of constraining power, as the broadband shape of the power spectrum contributes significantly to constraints. We also expand on previous work to demonstrate how cosmology-independent constraints on $M_ u$ can be extracted by combining measurements of the scale-dependence in the power spectrum caused by neutrino free-streaming with the full power of future CMB surveys. These free-streaming constraints are independent of the optical depth to the CMB ($tau$) and competitive with constraints from BAOs for extended cosmologies, even when both are combined with CMB lensing and galaxy-CMB lensing.
We examine bounds on adiabatic and isocurvature density fluctuations from $mu$-type spectral distortions of the cosmic microwave background (CMB). Studies of such distortion are complementary to CMB measurements of the spectral index and its running, and will help to constrain these parameters on significantly smaller scales. We show that a detection on the order of $mu sim 10^{-7}$ would strongly be at odds with the standard cosmological model of a nearly scale-invariant spectrum of adiabatic perturbations. Further, we find that given the current CMB constraints on the isocurvature mode amplitude, a nearly scale-invariant isocurvature mode (common in many curvaton models) cannot produce significant $mu$-distortion. Finally, we show that future experiments will strongly constrain the amplitude of the isocurvature modes with a highly blue spectrum as predicted by certain axion models.
236 - Cora Dvorkin , Wayne Hu 2010
We place functional constraints on the shape of the inflaton potential from the cosmic microwave background through a variant of the generalized slow roll approximation that allows large amplitude, rapidly changing deviations from scale-free conditio ns. Employing a principal component decomposition of the source function G~3(V/V)^2 - 2V/V and keeping only those measured to better than 10% results in 5 nearly independent Gaussian constraints that maybe used to test any single-field inflationary model where such deviations are expected. The first component implies < 3% variations at the 100 Mpc scale. One component shows a 95% CL preference for deviations around the 300 Mpc scale at the ~10% level but the global significance is reduced considering the 5 components examined. This deviation also requires a change in the cold dark matter density which in a flat LCDM model is disfavored by current supernova and Hubble constant data and can be tested with future polarization or high multipole temperature data. Its impact resembles a local running of the tilt from multipoles 30-800 but is only marginally consistent with a constant running beyond this range. For this analysis, we have implemented a ~40x faster WMAP7 likelihood method which we have made publicly available.
Axion-like particles are dark matter candidates motivated by the Peccei-Quinn mechanism and also occur in effective field theories where their masses and photon couplings are independent. We estimate the dispersion of circularly polarized photons in a background of oscillating axion-like particles (ALPs) with the standard $g_{agamma},a,F_{mu u}tilde F^{mu u}/4$ coupling to photons. This leads to birefringence or rotation of linear polarization by ALP dark matter. Cosmic microwave background (CMB) birefringence limits $Delta alpha lesssim (1.0)^circ$ enable us to constrain the axion-photon coupling $g_{agamma} lesssim 10^{-17}-10^{-12},{rm GeV}^{-1}$, for ultra-light ALP masses $m_a sim 10^{-27} - 10^{-24}$ eV. This improves upon previous axion-photon coupling limits by up to four orders of magnitude. Future CMB observations could tighten limits by another one to two orders.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا