ﻻ يوجد ملخص باللغة العربية
We use the ultra-deep WFC3/IR data over the HUDF and the Early Release Science WFC3/IR data over the CDF-South GOODS field to quantify the broadband spectral properties of candidate star-forming galaxies at z~7. We determine the UV-continuum slope beta in these galaxies, and compare the slopes with galaxies at later times to measure the evolution in beta. For luminous L*(z=3) galaxies, we measure a mean UV-continuum slope beta of -2.0+/-0.2, which is comparable to the beta~-2 derived at similar luminosities at z~5-6. However, for the lower luminosity 0.1L*(z=3) galaxies, we measure a mean beta of -3.0+/-0.2. This is substantially bluer than is found for similar luminosity galaxies at z~4, just 800 Myr later, and even at z~5-6. In principle, the observed beta of -3.0 can be matched by a very young, dust-free stellar population, but when nebular emission is included the expected beta becomes >~-2.7. To produce these very blue betas (i.e., beta~-3), extremely low metallicities and mechanisms to reduce the red nebular emission are likely required. For example, a large escape fraction (i.e., f_{esc}>~0.3) could minimize the contribution from this red nebular emission. If this is correct and the escape fraction in faint z~7 galaxies is >~0.3, it may help to explain how galaxies reionize the universe.
The HUDF09 data are the deepest near-IR observations ever, reaching to 29.5 mag. Luminosity functions (LF) from these new HUDF09 data for 132 zsim7 and zsim8 galaxies are combined with new LFs for zsim5-6 galaxies and the earlier zsim4 LF to reach to
We identify 73 z~7 and 59 z~8 candidate galaxies in the reionization epoch, and use this large 26-29.4 AB mag sample of galaxies to derive very deep luminosity functions to <-18 AB mag and the star formation rate density at z~7 and z~8. The galaxy sa
We study six luminous Lyman-alpha emitters (LAEs) with very blue rest-frame UV continua at $5.7le z le 6.6$. These LAEs have previous HST and Spitzer IRAC observations. Combining our newly acquired HST images, we find that their UV-continuum slopes $
Ultra-deep ACS and WFC3/IR HUDF+HUDF09 data, along with the wide-area GOODS+ERS+CANDELS data over the CDF-S GOODS field, are used to measure UV colors, expressed as the UV-continuum slope beta, of star-forming galaxies over a wide range in luminosity
The observed UV continuum slope of star forming galaxies is strongly affected by the presence of dust. Its observation is then a potentially valuable diagnostic of dust attenuation, particularly at high-redshift where other diagnostics are currently