Embedding methods for large-scale surface calculations


الملخص بالإنكليزية

One of the goals in the development of large scale electronic structure methods is to perform calculations explicitly for a localised region of a system, while still taking into account the rest of the system outside of this region. An example of this in surface physics would be to embed an adsorbate and a few surface atoms into an extended substrate, hence considerably reducing computational costs. Here we apply the constrained electron density method of embedding a Kohn-Sham system in a substrate system (first described by P. Cortonacite{1} and T.A. Wesolowskicite{2}), within a plane-wave basis and pseudopotential framework. This approach divides the charge density of the system into substrate and embedded charge densities, the sum of which is the charge density of the actual system of interest. Two test cases are considered. First we construct fcc bulk aluminium by embedding one cubic lattice of atoms within another. Second, we examine a model surface/adsorbate system of aluminium on aluminium and compare with full Kohn-Sham results.

تحميل البحث