We discuss fits of unconventional dark energy models to the available data from high-redshift supernovae, distant galaxies and baryon oscillations. The models are based either on brane cosmologies or on Liouville strings in which a relaxation dark energy is provided by a rolling dilaton field (Q-cosmology). Such cosmologies feature the possibility of effective four-dimensional negative-energy dust and/or exotic scaling of dark matter. We find evidence for a negative-energy dust at the current era, as well as for exotic-scaling (a^{-delta}) contributions to the energy density, with delta ~= 4, which could be due to dark matter coupling with the dilaton in Q-cosmology models. We conclude that Q-cosmology fits the data equally well with the LambdaCDM model for a range of parameters that are in general expected from theoretical considerations.