ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraining super-critical string/brane cosmologies with astrophysical data

129   0   0.0 ( 0 )
 نشر من قبل Vasiliki Mitsou
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss fits of unconventional dark energy models to the available data from high-redshift supernovae, distant galaxies and baryon oscillations. The models are based either on brane cosmologies or on Liouville strings in which a relaxation dark energy is provided by a rolling dilaton field (Q-cosmology). Such cosmologies feature the possibility of effective four-dimensional negative-energy dust and/or exotic scaling of dark matter. We find evidence for a negative-energy dust at the current era, as well as for exotic-scaling (a^{-delta}) contributions to the energy density, with delta ~= 4, which could be due to dark matter coupling with the dilaton in Q-cosmology models. We conclude that Q-cosmology fits the data equally well with the LambdaCDM model for a range of parameters that are in general expected from theoretical considerations.



قيم البحث

اقرأ أيضاً

Many cosmological models invoke rolling scalar fields to account for the observed acceleration of the expansion of the universe. These theories generally include a potential V(phi) which is a function of the scalar field phi. Although V(phi) can be r epresented by a very diverse set of functions, recent work has shown the under some conditions, such as the slow roll conditions, the equation of state parameter w is either independent of the form of V(phi) or is part of family of solutions with only a few parameters. In realistic models of this type the scalar field couples to other sectors of the model leading to possibly observable changes in the fundamental constants such as the fine structure constant alpha and the proton to electron mass ratio mu. This paper explores the limits this puts on the validity of various cosmologies that invoke rolling scalar fields. We find that the limit on the variation of mu puts significant constraints on the product of a cosmological parameter w+1 times a new physics parameter zeta_mu^2, the coupling constant between mu and the rolling scalar field. Even when the cosmologies are restricted to very slow roll conditions either the value of zeta_mu must be at the lower end of or less than its expected values or the value of w+1 must be restricted to values vanishingly close to 0. This implies that either the rolling scalar field is very weakly coupled with the electromagnetic field, small zeta_mu, very weakly coupled with gravity, w+1 ~ 0 or both. These results stress that adherence to the measured invariance in mu is a very significant test of the validity of any proposed cosmology and any new physics it requires. The limits on the variation of mu also produces a significant tension with the reported changes in the value of alpha.
In physically realistic scalar-field based dynamical dark energy models (including, e.g., quintessence) one naturally expects the scalar field to couple to the rest of the models degrees of freedom. In particular, a coupling to the electromagnetic se ctor leads to a time (redshift) dependence of the fine-structure constant and a violation of the Weak Equivalence Principle. Here we extend the previous Euclid forecast constraints on dark energy models to this enlarged (but physically more realistic) parameter space, and forecast how well Euclid, together with high-resolution spectroscopic data and local experiments, can constrain these models. Our analysis combines simulated Euclid data products with astrophysical measurements of the fine-structure constant, $alpha$, and local experimental constraints, and includes both parametric and non-parametric methods. For the astrophysical measurements of $alpha$ we consider both the currently available data and a simulated dataset representative of Extremely Large Telescope measurements and expected to be available in the 2030s. Our parametric analysis shows that in the latter case the inclusion of astrophysical and local data improves the Euclid dark energy figure of merit by between $8%$ and $26%$, depending on the correct fiducial model, with the improvements being larger in the null case where the fiducial coupling to the electromagnetic sector is vanishing. These improvements would be smaller with the current astrophysical data. Moreover, we illustrate how a genetic algorithms based reconstruction provides a null test for the presence of the coupling. Our results highlight the importance of complementing surveys like Euclid with external data products, in order to accurately test the wider parameter spaces of physically motivated paradigms.
We discuss fits of cosmological dark energy models to the available data on high-redshift supernovae. We consider a conventional model with Cold Dark Matter and a cosmological constant (LambdaCDM), a model invoking super-horizon perturbations (SHCDM) and models based on Liouville strings in which dark energy is provided by a rolling dilaton field (Q-cosmology). We show that a complete treatment of Q-cosmology requires a careful discussion of non-equilibrium situations (off-shell effects). The two main high-redshift supernova data sets give compatible constraints on LambdaCDM and the other models. We recover the well-known result that LambdaCDM fits very well the combined supernova data sets, as does the super-horizon model. We discuss the model-dependent off-shell corrections to the Q-cosmology model that are relevant to the supernova data, and show that this model fits the data equally well. This analysis could be extended to other aspects of cosmological phenomenology, in particular to the CMB and Baryon Acoustic Oscillations, which have so far been treated using on-shell models.
The phantom brane has several important distinctive features: (i) Its equation of state is phantom-like, but there is no future `big rip singularity, (ii) the effective cosmological constant on the brane is dynamically screened, because of which the expansion rate is {em smaller} than that in $Lambda$CDM at high redshifts. In this paper, we constrain the Phantom braneworld using distance measures such as Type Ia supernovae (SNeIa), Baryon Acoustic Oscillations (BAO), and the compressed Cosmic Microwave Background (CMB) data. We find that the simplest braneworld models provide a good fit to the data. For instance, BAO +SNeIa data can be accommodated by the braneworld for a large region in parameter space $0 < Omega_l < 0.3$ at $1sigma$. The Hubble parameter can be as high as $H_0 < 78$ km/s/Mpc, and the effective equation of state at present can show phantom-like behaviour with $w_0 < -1.2$ at $1sigma$. We note a correlation between $H_0$ and $w_0$, with higher values of $H_0$ leading to a lower, and more phantom-like, value of $w_0$. Inclusion of CMB data provides tighter constraints $Omega_l < 0.1$. (Here $Omega_l$ encodes the ratio of the five and four dimensional Planck mass.) The Hubble parameter in this case is more tightly constrained to $H_0 < 71$ km/s/Mpc, and the effective equation of state to $w_0 < -1.1$. Interestingly, we find that the universe is allowed be closed or open, with $-0.5 < Omega_{kappa} < 0.5$, even on including the compressed CMB data. There appears to be some tension in the low and high $z$ BAO data which may either be resolved by future data, or act as a pointer to interesting new cosmology.
We study the Hybrid Natural Inflation (HNI) model and some of its realisations in the light of recent CMB observations, mainly Planck temperature and WMAP-9 polarization, and compare with the recent release of BICEP2 dataset. The inflationary sector of HNI is essentially given by the potential $V(phi) = V_0(1+acos (frac{phi}{f} ) )$, where $a$ is a positive constant smaller or equal to one and $f$ is the scale of (pseudo Nambu-Goldstone) symmetry breaking. We show that to describe the HNI model realisations we only need two observables; the spectral index $n_s$, the tensor-to-scalar ratio, and a free parameter in the amplitude of the cosine function $a$. We find that in order to make the HNI model compatible with the BICEP2 observations, we require a large positive running of the spectra. We find that this could over-produce primordial black holes in the most consistent case of the model. This situation could be aleviated if, as recently argued, the BICEP2 data do not correspond to primordial gravitational waves.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا