ﻻ يوجد ملخص باللغة العربية
High levels of deuterium fractionation in gas-phase molecules are usually associated with cold regions, such as prestellar cores. Significant fractionation ratios are also observed in hot environments such as hot cores or hot corinos, where they are believed to be produced by the evaporation of the icy mantles surrounding dust grains, and thus are remnants of a previous cold (either gas-phase or grain surface) chemistry. The recent detection of DCN towards the Orion Bar, in a clump at a characteristic temperature of 70K, has shown that high deuterium fractionation can also be detected in PDRs. The Orion Bar clumps thus appear as a good environment for the observational study of deuterium fractionation in luke-warm gas, allowing to validate chemistry models in a different temperature range, where dominating fractionation processes are predicted to be different than in cold gas (< 20K). We aimed at studying observationally in detail the chemistry at work in the Orion Bar PDR, to understand if DCN is produced by ice mantle evaporation, or is the result of warm gas-phase chemistry, involving the CH2D+ precursor ion (which survives higher temperatures than the usual H2D+ precursor). Using the APEX and the IRAM 30m telescopes, we targetted selected deuterated species towards two clumps in the Orion Bar. We confirmed the detection of DCN and detected two new deuterated molecules (DCO+ and HDCO) towards one clump in the Orion Bar PDR. Significant deuterium fractionations are found for HCN and H2CO, but a low fractionation in HCO+. We also give upper limits for other molecules relevant for the deuterium chemistry. (...) We show evidence that warm deuterium chemistry driven by CH2D+ is at work in the clumps.
We study the spatial distribution and chemistry of small hydrocarbons in the Orion Bar PDR. We used the IRAM-30m telescope to carry out a millimetre line survey towards the Orion Bar edge, complemented with ~2x2 maps of the C2H and c-C3H2 emission. W
As part of a far-infrared (FIR) spectral scan with Herschel/PACS, we present the first detection of the hydroxyl radical (OH) towards the Orion Bar photodissociation region (PDR). Five OH rotational Lambda-doublets involving energy levels out to E_u/
Our main purpose is to estimate the effect of assuming uniform density on the line-of-sight in PDR chemistry models, compared to a more realistic distribution for which total gas densities may well vary by several orders of magnitude. A secondary goa
We review and update some aspects of deuterium chemistry in the post-recombination Universe with particular emphasis on the formation and destruction of HD. We examine in detail the available theoretical and experimental data for the leading reaction
The L1544 pre-stellar core has been observed as part of the ASAI IRAM 30m Large Program as well as follow-up programs. These observations have revealed the chemical richness of the earliest phases of low-mass star-forming regions. In this paper we fo