ترغب بنشر مسار تعليمي؟ اضغط هنا

VSA Observations of the Anomalous Microwave Emission in the Perseus Region

161   0   0.0 ( 0 )
 نشر من قبل Christopher Tibbs
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The dust feature G159.6--18.5 in the Perseus region has previously been observed with the COSMOSOMAS experiment citep{Watson:05} on angular scales of $approx$ 1$^{circ}$, and was found to exhibit anomalous microwave emission. We present new observations of this dust feature, performed with the Very Small Array (VSA) at 33 GHz, to help increase the understanding of the nature of this anomalous emission. On the angular scales observed with the VSA ($approx$ 10 -- 40$^{prime}$), G159.6--18.5 consists of five distinct components, each of which have been individually analysed. All five of these components are found to exhibit an excess of emission at 33 GHz, and are found to be highly correlated with far-infrared emission. We provide evidence that each of these compact components have anomalous emission that is consistent with electric dipole emission from very small, rapidly rotating dust grains. These components contribute $approx$ 10 % to the flux density of the diffuse extended emission detected by COSMOSOMAS, and are found to have a similar radio emissivity.



قيم البحث

اقرأ أيضاً

We present observations of the known anomalous microwave emission region, G159.6-18.5, in the Perseus molecular cloud at 16 GHz performed with the Arcminute Microkelvin Imager Small Array. These are the highest angular resolution observations of G159 .6-18.5 at microwave wavelengths. By combining these microwave data with infrared observations between 5.8 and 160 mu m from the Spitzer Space Telescope, we investigate the existence of a microwave - infrared correlation on angular scales of ~2 arcmin. We find that the overall correlation appears to increase towards shorter infrared wavelengths, which is consistent with the microwave emission being produced by electric dipole radiation from small, spinning dust grains. We also find that the microwave - infrared correlation peaks at 24 mu m (6.7sigma), suggesting that the microwave emission is originating from a population of stochastically heated small interstellar dust grains rather than polycyclic aromatic hydrocarbons.
232 - E.S. Battistelli 2015
We have observed the HII region RCW175 with the 64m Parkes telescope at 8.4GHz and 13.5GHz in total intensity, and at 21.5GHz in both total intensity and polarization. High angular resolution, high sensitivity, and polarization capability enable us t o perform a detailed study of the different constituents of the HII region. For the first time, we resolve three distinct regions at microwave frequencies, two of which are part of the same annular diffuse structure. Our observations enable us to confirm the presence of anomalous microwave emission (AME) from RCW175. Fitting the integrated flux density across the entire region with the currently available spinning dust models, using physically motivated assumptions, indicates the presence of at least two spinning dust components: a warm component with a relatively large hydrogen number density n_H=26.3/cm^3 and a cold component with a hydrogen number density of n_H=150/cm^3. The present study is an example highlighting the potential of using high angular-resolution microwave data to break model parameter degeneracies. Thanks to our spectral coverage and angular resolution, we have been able to derive one of the first AME maps, at 13.5GHz, showing clear evidence that the bulk of the AME arises in particular from one of the source components, with some additional contribution from the diffuse structure. A cross-correlation analysis with thermal dust emission has shown a high degree of correlation with one of the regions within RCW175. In the center of RCW175, we find an average polarized emission at 21.5GHz of 2.2pm0.2(rand.)pm0.3(sys.)% of the total emission, where we have included both systematic and statistical uncertainties at 68% CL. This polarized emission could be due to sub-dominant synchrotron emission from the region and is thus consistent with very faint or non-polarized emission associated with AME.
We present observations performed with the Green Bank Telescope at 1.4 and 5 GHz of three strips coincident with the anomalous microwave emission features previously identified in the Perseus molecular cloud at 33 GHz with the Very Small Array. With these observations we determine the level of the low frequency (~1 - 5 GHz) emission. We do not detect any significant extended emission in these regions and we compute conservative 3sigma upper limits on the fraction of free-free emission at 33 GHz of 27%, 12%, and 18% for the three strips, indicating that the level of the emission at 1.4 and 5 GHz cannot account for the emission observed at 33 GHz. Additionally, we find that the low frequency emission is not spatially correlated with the emission observed at 33 GHz. These results indicate that the emission observed in the Perseus molecular cloud at 33 GHz, is indeed in excess over the low frequency emission, hence confirming its anomalous nature.
106 - E.S. Battistelli 2006
The anomalous microwave emission detected in the Perseus molecular complex by Watson ea has been observed at 11 GHz through dual orthogonal polarizations with the COSMOSOMAS experiment. Stokes U and Q maps were obtained at a resolution of sim 0.9deg. for a 30deg. X 30deg. region including the Perseus molecular complex. A faint polarized emission has been measured; we find Q=-0.2 % pm1.0%, while U=-3.4^{+1.8}_{-1.4}% both at the 95% confidence level with a systematic uncertainty estimated to be lower than 1% determined from tests of the instrumental performance using unpolarized sources in our map as null hypothesis. The resulting total polarization level is Pi = 3.4^{+1.5}_{-1.9}%. These are the first constraints on the polarization properties of an anomalous microwave emission source. The low level of polarization seems to indicate that the particles responsible for this emission in the Perseus molecular complex are not significantly aligned in a common direction over the whole region, as a consequence of either a high structural symmetry in the emitting particle or a low-intensity magnetic field. Our weak detection is fully consistent with predictions from electric dipole emission and resonance relaxation at this frequency.
Anomalous microwave emission (AME) has been observed in numerous sky regions, in the frequency range ~10-60 GHz. One of the most scrutinized regions is G159.6-18.5, located within the Perseus molecular complex. In this paper we present further observ ations of this region (194 hours in total over ~250 deg^2), both in intensity and in polarization. They span four frequency channels between 10 and 20 GHz, and were gathered with QUIJOTE, a new CMB experiment with the goal of measuring the polarization of the CMB and Galactic foregrounds. When combined with other publicly-available intensity data, we achieve the most precise spectrum of the AME measured to date, with 13 independent data points being dominated by this emission. The four QUIJOTE data points provide the first independent confirmation of the downturn of the AME spectrum at low frequencies, initially unveiled by the COSMOSOMAS experiment in this region. We accomplish an accurate fit of these data using models based on electric dipole emission from spinning dust grains, and also fit some of the parameters on which these models depend. We also present polarization maps with an angular resolution of ~1 deg and a sensitivity of ~25 muK/beam. From these maps, which are consistent with zero polarization, we obtain upper limits of Pi<6.3% and <2.8% (95% C.L.) respectively at 12 and 18 GHz, a frequency range where no AME polarization observations have been reported to date. These constraints are compatible with theoretical predictions of the polarization fraction from electric dipole emission originating from spinning dust grains. At the same time, they rule out several models based on magnetic dipole emission from dust grains ordered in a single magnetic domain, which predict higher polarization levels. Future QUIJOTE data in this region may allow more stringent constraints on the polarization level of the AME.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا