ﻻ يوجد ملخص باللغة العربية
We develop a complete Hitchin-Kobayashi correspondence for twisted pairs on a compact Riemann surface X. The main novelty lies in a careful study of the the notion of polystability for pairs, required for having a bijective correspondence between solutions to the Hermite-Einstein equations, on one hand, and polystable pairs, on the other. Our results allow us to establish rigorously the homemomorphism between the moduli space of polystable G-Higgs bundles on X and the character variety for representations of the fundamental group of X in G. We also study in detail several interesting examples of the correspondence for particular groups and show how to significantly simplify the general stability condition in these cases.
Using Hitchins parameterization of the Hitchin-Teichmuller component of the $SL(n,mathbb{R})$ representation variety, we study the asymptotics of certain families of representations. In fact, for certain Higgs bundles in the $SL(n,mathbb{R})$-Hitchin
We study the character variety of representations of the fundamental group of a closed surface of genus $ggeq2$ into the Lie group SO(n,n+1) using Higgs bundles. For each integer $0<dleq n(2g-2),$ we show there is a smooth connected component of the
We give an overview of the work of Corlette, Donaldson, Hitchin and Simpson leading to the non-abelian Hodge theory correspondence between representations of the fundamental group of a surface and the moduli space of Higgs bundles. We then explain ho
This paper is about geometric quantization of the Hitchin system. We quantize a Kahler form on the Hitchin moduli space (which is half the first Kahler form defined by Hitchin) by considering the Quillen bundle as the prequantum line bundle and modif
We show that for every nonelementary representation of a surface group into $SL(2,{mathbb C})$ there is a Riemann surface structure such that the Higgs bundle associated to the representation lies outside the discriminant locus of the Hitchin fibration.