ﻻ يوجد ملخص باللغة العربية
We bring out the identity between two ways of defining a single parameter to combine positional & strength asymmetries of extended extragalactic double radio sources associated with active galaxies. Thus, (r.s - 1)/[(1 + r).(1 + s)], combining arm ratio r (defined to be <= 1, i.e., shorter to longer arm) & strength ratio s (in the sense closer to farther, so that it may be <, > or = 1), is identical to -(1/2)[(1 - fr)/(1 + fr) - t], where fr is strength ratio defined >= 1 (i.e., stronger to weaker), & t = +/- (Q - 1)/(Q + 1), +/- signs applying respectively to doubles with closer hotspot fainter & those with closer hotspot brighter, while Q is arm ratio defined >= 1. Keywords: active galaxies - double radio sources - bilateral symmetry - arm ratio - flux ratio
This paper studied the faint, diffuse extended X-ray emission associated with the radio lobes and the hot gas in the intracluster medium (ICM) environment for a sample of radio galaxies. We used shallow ($sim 10$ ks) archival Chandra observations for
Double-double radio galaxies (DDRGs) represent a short but unique phase in the life-cycle of some of the most powerful radio-loud active galactic nuclei (RLAGN). These galaxies display large-scale remnant radio plasma in the intergalactic medium left
We present the results of Karl G. Jansky Very Large Array (VLA) observations to study the properties of FR0 radio galaxies, the compact radio sources associated with early-type galaxies which represent the bulk of the local radio-loud AGN population.
Context. It will soon become possible to directly link the most accurate radio reference frame with the Gaia optical reference frame using many common extragalactic objects. It is important to know the level of coincidence between the radio and optic
Bent-double radio sources have been used as a probe to measure the density of intergalactic gas in galaxy groups. We carry out a series of high-resolution, 3D simulations of AGN jets moving through an external medium with a constant density in order