Seeing sharper or becoming invisible are visions strongly driving the development of THz metamaterials. Strings are a preferred architecture of metamaterials as they extend continuously along one dimension. Here, we demonstrate that laterally interconnecting strings by structural elements that are placed in oscillation nodes such as to not quench electromagnetic resonances enables manufacturing of self-supported free-standing all-metal metamaterials. Upright S-strings, interconnected by rods, form a space-grid which we call meta-foil. In this way, we introduce binding between the atoms of the metamaterial, thus doing away with conventional frozen-in solutions like matrix embedding or thin films on substrates. Meta-foils are locally stiff, yet globally flexible. Even bent to cylinders of 1 cm radius, they maintain their spectral response, thus becoming true metamaterials on curved surfaces. Exploiting UV/X-ray lithography and ultimately plastic moulding, meta-foils can be cost-effectively manufactured in large areas and quantities to serve as optical elements.