ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic excitations of the gapped quantum spin dimer antiferromagnet Sr$_{3}$Cr$_{2}$O$_{8}$

179   0   0.0 ( 0 )
 نشر من قبل Diana Quintero-Castro
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Sr$_{3}$Cr$_{2}$O$_{8}$ consist of a lattice of spin-1/2 Cr$^{5+}$ ions, which form hexagonal bilayers and which are paired into dimers by the dominant antiferromagnetic intrabilayer coupling. The dimers are coupled three-dimensionally by frustrated interdimer interactions. A structural distortion from hexagonal to monoclinic leads to orbital order and lifts the frustration giving rise to spatially anisotropic exchange interactions. We have grown large single crystals of Sr$_{3}$Cr$_{2}$O$_{8}$ and have performed DC susceptibility, high field magnetisation and inelastic neutron scattering measurements. The neutron scattering experiments reveal three gapped and dispersive singlet to triplet modes arising from the three twinned domains that form below the transition thus confirming the picture of orbital ordering. The exchange interactions are extracted by comparing the data to a Random Phase Approximation model and the dimer coupling is found to be $J_{0}=5.55$ meV, while the ratio of interdimer to intradimer exchange constants is $J/J_{0}=0.64$. The results are compared to those for other gapped magnets.



قيم البحث

اقرأ أيضاً

In this work, we investigate the evolution and settling of magnon condensation in the spin-1/2 dimer system Sr$_{3}$Cr$_{2}$O$_{8}$ using a combination of magnetostriction in pulsed fields and inelastic neutron scattering in a continuous magnetic fie ld. The magnetic structure in the Bose-Einstein condensation (BEC) phase was probed by neutron diffraction in pulsed magnetic fields up to 39~T. The magnetic structure in this phase was confirmed to be an XY-antiferromagnetic structure validated by irreducible representational analysis. The magnetic phase diagram as a function of an applied magnetic field for this system is presented. Furthermore, zero-field neutron diffraction results indicate that dimerization plays an important role in stabilizing the low-temperature crystal structure.
In $A_{3}$Cr$_{2}$O$_{8}$, where $A$ = Sr or Ba, the Cr$^{5+}$ ions surrounded by oxygen ions in a tetrahedral coordination are Jahn-Teller active. The Jahn-Teller distortion leads to a structural transition and a related emergence of three twinned m onoclinic domains below the structural phase transition. This transition is highly dynamic over an extended temperature range for $A$ = Sr. We have investigated mixed compounds Ba$_{3-x}$Sr$_{x}$Cr$_{2}$O$_{8}$ with $x=2.9$ and $x=2.8$ by means of X-ray and neutron diffraction, Raman scattering and calorimetry. Based on the obtained evolution of the phonon frequencies, we find a distinct suppression of the orbital-lattice fluctuation regime with increasing Ba content. This stands in contrast to the linear behaviour exhibited by unit cell volumes, atomic positions and intradimer spin-spin exchange interactions.
152 - M. Kofu , J.-H. Kim , S. Ji 2008
Using single crystal inelastic neutron scattering with and without application of an external magnetic field and powder neutron diffraction, we have characterized magnetic interactions in Ba$_3$Cr$_2$O$_8$. Even without field, we found that there exi st three singlet-to-triplet excitation modes in $(h,h,l)$ scattering plane. Our complete analysis shows that the three modes are due to spatially anisotropic interdimer interactions that are induced by local distortions of the tetrahedron of oxygens surrounding the Jahn-Teller active Cr$^{5+} (3d^1)$. The strong intradimer coupling of $J_0 = 2.38(2)$ meV and weak interdimer interactions ($|J_{rm inter}| leq 0.52(2)$ meV) makes Ba$_3$Cr$_2$O$_8$ a good model system for weakly-coupled $s = 1/2$ quantum spin dimers.
A single-crystal sample of the frustrated quasi one-dimensional quantum magnet Cs$_{2}$Cu$_{2}$Mo$_{3}$O$_{12}$ is investigated by magnetic and thermodynamic measurements.A combination of specific heat and magnetic torque measurements maps out the en tire $H$-$T$ phase diagram for three orientations.Remarkably, a new phase emerges below the saturation field, irrespective of the crystal orientation. It is suggested that the presaturation phase represents spin-nematic order or other multi-magnon condensate. The phase diagrams within the long-range ordered dome are qualitatively different for each geometry. In particular, multiple transitions are identified in the field along the chain direction.
We report gapless quantum spin liquid behavior in the layered triangular Sr$_{3}$CuSb$_{2}$O$_{9}$ (SCSO) system. X-ray diffraction shows superlattice reflections associated with atomic site ordering into triangular Cu planes well-separated by Sb pla nes. Muon spin relaxation ($mu$SR) measurements show that the $S = frac{1}{2}$ moments at the magnetically active Cu sites remain dynamic down to 65 mK in spite of a large antiferromagnetic exchange scale evidenced by a large Curie-Weiss temperature $theta_{mathrm{cw}} simeq $ -143 K as extracted from the bulk susceptibility. Specific heat measurements also show no sign of long-range order down to 0.35 K. The magnetic specific heat ($mathit{C}$$_{mathrm{m}}$) below 5 K reveals a $mathit{C}$$_{mathrm{m}}$ $=$ $gamma T$ + $alpha T$$^{2}$ behavior. The significant $T$$^{2}$ contribution to the magnetic specific heat invites a phenomenology in terms of the so-called Dirac spinon excitations with a linear dispersion. From the low-$T$ specific heat data, we estimate the dominant exchange scale to be $sim $ 36 K using a Dirac spin liquid ansatz which is not far from the values inferred from microscopic density functional theory calculations ($sim $ 45 K) as well as high-temperature susceptibility analysis ($sim$ 70 K). The linear specific heat coefficient is about 18 mJ/mol-K$^2$ which is somewhat larger than for typical Fermi liquids.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا