We provide a new provably-secure steganographic encryption protocol that is proven secure in the complexity-theoretic framework of Hopper et al. The fundamental building block of our steganographic encryption protocol is a one-time stegosystem that allows two parties to transmit messages of length shorter than the shared key with information-theoretic security guarantees. The employment of a pseudorandom generator (PRG) permits secure transmission of longer messages in the same way that such a generator allows the use of one-time pad encryption for messages longer than the key in symmetric encryption. The advantage of our construction, compared to that of Hopper et al., is that it avoids the use of a pseudorandom function family and instead relies (directly) on a pseudorandom generator in a way that provides linear improvement in the number of applications of the underlying one-way permutation per transmitted bit. This advantageous trade-off is achieved by substituting the pseudorandom function family employed in the previous construction with an appropriate combinatorial construction that has been used extensively in derandomization, namely almost t-wise independent function families.