ﻻ يوجد ملخص باللغة العربية
Quantum information protocols are inevitably affected by decoherence which is associated with the leakage of quantum information into an environment. In this paper we address the possibility of recovering the quantum information from an environmental measurement. We investigate continuous variable quantum information, and we propose a simple environmental measurement that under certain circumstances fully restores the quantum information of the signal state although the state is not reconstructed with unit fidelity. We implement the protocol for which information is encoded into conjugate quadratures of coherent states of light and the noise added under the decoherence process is of Gaussian nature. The correction protocol is tested using both a deterministic as well as a probabilistic strategy. The potential use of the protocol in a continuous variable quantum key distribution scheme as a means to combat excess noise is also investigated.
Integrated quantum photonics provides a scalable platform for the generation, manipulation, and detection of optical quantum states by confining light inside miniaturized waveguide circuits. Here we show the generation, manipulation, and interferomet
We study the conditions under which a subsystem code is correctable in the presence of noise that results from continuous dynamics. We consider the case of Markovian dynamics as well as the general case of Hamiltonian dynamics of the system and the e
Continuous-time quantum error correction (CTQEC) is an approach to protecting quantum information from noise in which both the noise and the error correcting operations are treated as processes that are continuous in time. This chapter investigates C
We introduce a novel strategy, based on the use of modular variables, to encode and deterministically process quantum information using states described by continuous variables. Our formalism leads to a general recipe to adapt existing quantum inform
The present paper is devoted to investigation of the entropy reduction and entanglement-assisted classical capacity (information gain) of continuous variable quantum measurements. These quantities are computed explicitly for multimode Gaussian measur