ﻻ يوجد ملخص باللغة العربية
Relativistic shocks are usually thought to occur in violent astrophysical explosions. These collisionless shocks are mediated by a plasma kinetic streaming instability, often loosely referred to as the Weibel instability, which generates strong magnetic fields from scratch very efficiently. In this review paper we discuss the shock micro-physics and present a recent model of pre-conditioning of an initially unmagnetized upstream region via the cosmic-ray-driven Weibel-type instability.
We develop a comprehensive theoretical model of relativistic collisionless pair shocks mediated by the current filamentation instability. We notably characterize the noninertial frame in which this instability is of a mostly magnetic nature, and desc
Relativistic astrophysical collisionless shocks represent outstanding dissipation agents of the huge power of relativistic outflows produced by accreting black holes, core collapsed supernovae and other objects into multi-messenger radiation (cosmic
In this first paper of a series dedicated to the microphysics of unmagnetized, relativistic collisionless pair shocks, we discuss the physics of the Weibel-type transverse current filamentation instability (CFI) that develops in the shock precursor,
In this third paper of a series, we discuss the physics of the population of accelerated particles in the precursor of an unmagnetized, relativistic collisionless pair shock. In particular, we provide a theoretical estimate of their scattering length
The physics of instabilities in the precursor of relativistic collisionless shocks is of broad importance in high energy astrophysics, because these instabilities build up the shock, control the particle acceleration process and generate the magnetic