ﻻ يوجد ملخص باللغة العربية
A rich harvest of RR Lyrae stars has been identified for the first time in B514, a metal-poor ([Fe/H] = 1.95 +/- 0.10 dex) globular cluster of the Andromeda galaxy (M31), based on Hubble Space Telescope Wide Field Planetary Camera 2 and Advanced Camera for Surveys time-series observations. We have detected and derived periods for 89 RR Lyrae stars (82 fundamental-mode -RRab- and 7 first-overtone -RRc- pulsators, respectively) among 161 candidate variables identified in the cluster. The average period of the RR Lyrae variables (<Pab> = 0.58 days and <Pc> = 0.35 days, for RRab and RRc pulsators, respectively) and the position in the period-amplitude diagram both suggest that B514 is likely an Oosterhoff type I cluster. This appears to be in disagreement with the general behaviour of the metal-poor globular clusters in the Milky Way, which show instead Oosterhoff type II pulsation properties. The average apparent magnitude of the RR Lyrae stars sets the mean level of the cluster horizontal branch at <V(RR)> = 25.18 +/- 0.02 (sigma=0.16 mag, on 81 stars). By adopting a reddening E(B-V) = 0.07 +/- 0.02 mag, the above metallicity and M_V=0.44 +/- 0.05 mag for the RR Lyrae variables of this metallicity, we derive a distance modulus of mu_0=24.52 +/- 0.08 mag, corresponding to a distance of about 800 +/- 30 kpc, based on a value of M_V that sets mu_0(LMC)=18.52.
Aims.We study the photometric and structural properties of the star cluster system in the late type Sc spiral NGC 3370. Methods. BVI observations from the Advanced Camera for Surveys on board of HST are used to analyse in detail the colours, magnitud
Globular clusters (GCs) are dense, gravitationally bound systems of thousands to millions of stars. They are preferentially associated with the oldest components of galaxies, and measurements of their composition can therefore provide insight into th
We present a new study of the variable star population in globular cluster 5 of the Fornax dwarf spheroidal galaxy, based on B and V time series photometry obtained with the MagIC camera of the 6.5 m Magellan Clay telescope and complementary HST arch
(Abridged) Interacting galaxies are well-known for their high star formation rates and rich star cluster populations, but the rapidly changing tidal field can also efficiently destroy clusters. We use numerical simulations of merging disc galaxies to
We examine whether the super star-forming clumps (R~1-3 kpc; M~10^8-10^9.5 Msun) now known to be a key component of star-forming galaxies at z~2 could be the formation sites of the locally observed old globular cluster population. We find that the st