ترغب بنشر مسار تعليمي؟ اضغط هنا

A new Hamiltonian formalism for singular Lagrangian theories

199   0   0.0 ( 0 )
 نشر من قبل Steven Duplij
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a version of the Hamiltonian formalism based on the Clairaut equation theory, which allows us a self-consistent description of systems with degenerate (or singular) Lagrangian. A generalization of the Legendre transform to the case, when the Hessian is zero is done using the mixed (envelope/general) solutions of the multidimensional Clairaut equation. The corresponding system of equations of motion is equivalent to the initial Lagrange equations, but contains nondynamical momenta and unresolved velocities. This system is reduced to the physical phase space and presented in the Hamiltonian form by introducing a new (non-Lie) bracket.



قيم البحث

اقرأ أيضاً

296 - Steven Duplij 2013
We formulate singular classical theories without involving constraints. Applying the action principle for the action (27) we develop a partial (in the sense that not all velocities are transformed to momenta) Hamiltonian formalism in the initially re duced phase space (with the canonical coordinates $q_{i},p_{i}$, where the number $n_{p}$ of momenta $p_{i}$, $i=1,...,n_{p}$ (17) is arbitrary $n_{p}leq n$, where $n$ is the dimension of the configuration space), in terms of the partial Hamiltonian $H_{0}$ (18) and $(n-n_{p})$ additional Hamiltonians $H_{alpha}$, $alpha=n_{p}+1,...,n$ (20). We obtain $(n-n_{p}+1)$ Hamilton-Jacobi equations (25)-(26). The equations of motion are first order differential equations (33)-(34) with respect to $q_{i},p_{i}$ and second order differential equations (35) for $q_{alpha}$. If $H_{0}$, $H_{alpha}$ do not depend on $dot{q}_{alpha}$ (42), then the second order differential equations (35) become algebraic equations (43) with respect to $dot{q}_{alpha}$. We interpret $q_{alpha}$ as additional times by (45), and arrive at a multi-time dynamics. The above independence is satisfied in singular theories and $r_{W}leq n_{p}$ (58), where $r_{W}$ is the Hessian rank. If $n_{p}=r_{W}$, then there are no constraints. A classification of the singular theories is given by analyzing system (62) in terms of $F_{alphabeta}$ (63). If its rank is full, then we can solve the system (62); if not, some of $dot{q}_{alpha}$ remain arbitrary (sign of a gauge theory). We define new antisymmetric brackets (69) and (80) and present the equations of motion in the Hamilton-like form, (67)-(68) and (81)-(82) respectively. The origin of the Dirac constraints in our framework is shown: if we define extra momenta $p_{alpha}$ by (86), then we obtain the standard primary constraints (87), and the new brackets transform to the Dirac bracket. Quantization is discussed.
140 - Steven Duplij 2013
A formulation of singular classical theories (determined by degenerate Lagrangians) without constraints is presented. A partial Hamiltonian formalism in the phase space having an initially arbitrary number of momenta (which can be smaller than the nu mber of velocities) is proposed. The equations of motion become first-order differential equations, and they coincide with those of multi-time dynamics, if a certain condition is imposed. In a singular theory, this condition is fulfilled in the case of the coincidence of the number of generalized momenta with the rank of the Hessian matrix. The noncanonical generalized velocities satisfy a system of linear algebraic equations, which allows an appropriate classification of singular theories (gauge and nongauge). A new antisymmetric bracket (similar to the Poisson bracket) is introduced, which describes the time evolution of physical quantities in a singular theory. The origin of constraints is shown to be a consequence of the (unneeded in our formulation) extension of the phase space. In this case the new bracket transforms into the Dirac bracket. Quantization is briefly discussed.
We study the pole structure of the $zeta$-function associated to the Hamiltonian $H$ of a quantum mechanical particle living in the half-line $mathbf{R}^+$, subject to the singular potential $g x^{-2}+x^2$. We show that $H$ admits nontrivial self-adj oint extensions (SAE) in a given range of values of the parameter $g$. The $zeta$-functions of these operators present poles which depend on $g$ and, in general, do not coincide with half an integer (they can even be irrational). The corresponding residues depend on the SAE considered.
In this paper, we present a Lagrangian formalism for nonequilibrium thermodynamics. This formalism is an extension of the Hamilton principle in classical mechanics that allows the inclusion of irreversible phenomena in both discrete and continuum sys tems (i.e., systems with finite and infinite degrees of freedom). The irreversibility is encoded into a nonlinear nonholonomic constraint given by the expression of entropy production associated to all the irreversible processes involved. Hence from a mathematical point of view, our variational formalism may be regarded as a generalization of the Lagrange-dAlembert principle used in nonholonomic mechanics. In order to formulate the nonholonomic constraint, we associate to each irreversible process a variable called the thermodynamic displacement. This allows the definition of a corresponding variational constraint. Our theory is illustrated with various examples of discrete systems such as mechanical systems with friction, matter transfer, electric circuits, chemical reactions, and diffusion across membranes. For the continuum case, the variational formalism is naturally extended to the setting of infinite dimensional nonholonomic Lagrangian systems and is expressed in material representation, while its spatial version is obtained via a nonholonomic Lagrangian reduction by symmetry. In the continuum case, our theory is systematically illustrated by the example of a multicomponent viscous heat conducting fluid with chemical reactions and mass transfer.
In previous papers, a geometric framework has been developed to describe non-conservative field theories as a kind of modified Lagrangian and Hamiltonian field theories. This approach is that of $k$-contact Hamiltonian systems, which is based on the $k$-symplectic formulation of field theories as well as on contact geometry. In this work we present the Skinner--Rusk unified setting for these kinds of theories, which encompasses both the Lagrangian and Hamiltonian formalisms into a single picture. This unified framework is specially useful when dealing with singular systems, since: (i) it incorporates in a natural way the second-order condition for the solutions of field equations, (ii) it allows to implement the Lagrangian and Hamiltonian constraint algorithms in a unique simple way, and (iii) it gives the Legendre transformation, so that the Lagrangian and the Hamiltonian formalisms are obtained straightforwardly. We apply this description to several interesting physical examples: the damped vibrating string, the telegraphers equations, and Maxwells equations with dissipation terms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا