ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonsinglet parton distribution functions from the precise next-to-next-to-next-to leading order QCD fit

117   0   0.0 ( 0 )
 نشر من قبل Shahin Atashbar Tehrani
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results of our QCD analysis for non-singlet unpolarized quark distributions and structure function $F_2(x,Q^2)$ up to N$^3$LO. In this regards 4-loop anomalous dimension can be obtain from the Pade approximations. The analysis is based on the Jacobi polynomials expansion of the structure function. New parameterizations are derived for the non-singlet quark distributions for the kinematic wide range of $x$ and $Q^2$. Our calculations for non-singlet unpolarized quark distribution functions up to N$^3$LO are in good agreement with available theoretical models. The higher twist contributions of $F_2^{p,d}(x,Q^2)$ are extracted in the large $x$ region in N$^3$LO analysis. The values of $Lambda_{QCD}$ and $alpha_s(M_z^2)$ are determined.



قيم البحث

اقرأ أيضاً

We report a calculation of the perturbative matching coefficients for the transverse-momentum-dependent parton distribution functions for quark at the next-to-next-to-next-to-leading order in QCD, which involves calculation of non-standard Feynman in tegrals with rapidity divergence. We introduce a set of generalized Integration-By-Parts equations, which allows an algorithmic evaluation of such integrals using the machinery of modern Feynman integral calculation.
We present a first analysis of parton-to-pion fragmentation functions at next-to-next-to-leading order accuracy in QCD based on single-inclusive pion production in electron-positron annihilation. Special emphasis is put on the technical details neces sary to perform the QCD scale evolution and cross section calculation in Mellin moment space. We demonstrate how the description of the data and the theoretical uncertainties are improved when next-to-next-to-leading order QCD corrections are included.
72 - Janko Binnewies 1997
We present new sets of fragmentation functions in next-to-leading order QCD that are determined from e+e- annihilation data of inclusive particle production. In addition to the O(alpha_s) unpolarized cross section the longitudinal cross section is al so used to extract the gluon fragmentation function from e+e- annihilation data. As the O(alpha_s) vanishes for longitudinal polarized photons (or Z bosons), the O(alpha_s^2) corrections are required to reduce the scale ambiguities. Recently, P.J. Rijken and W.L. van Neerven presented the longitudinal coefficient functions to next-to-leading order. We confirm part of their results in this thesis and complete the calculation by the results for the color class C_F*T_R that must be included for a consistent comparison with LEP1 data. The complete set of coefficient functions is then used together with novel data from ALEPH to determine the fragmentation functions for charged hadrons. This set, and also sets for charged pions, kaons, and D^* mesons as well as neutral kaons published previously, can then be employed to test QCD in e+e- annihilation, photoproduction, gamma-gamma collisions, p-p_bar scattering and DIS. Finally, we suggest how the improved knowledge on the fragmentation in particular of the gluon could be used to determine the gluon and charm content of the photon.
We present for the first time complete next-to-next-to-leading-order coefficient functions to match flavor non-singlet quark correlation functions in position space, which are calculable in lattice QCD, to parton distribution functions (PDFs). Using PDFs extracted from experimental data and our calculated matching coefficients, we predict valence-quark correlation functions that can be confronted by lattice QCD calculations. The uncertainty of our predictions is greatly reduced with higher order matching coefficients. By performing Fourier transformation, we also obtain matching coefficients for corresponding quasi-PDFs and pseudo-PDFs. Our method of calculations can be readily generalized to evaluate the matching coefficients for sea-quark and gluon correlation functions, putting the program to extract partonic structure of hadrons from lattice QCD calculations to be comparable with and complementary to that from experimental measurements.
We determine an approximate expression for the O(alpha_s^3) contribution chi_2 to the kernel of the BFKL equation, which includes all collinear and anticollinear singular contributions. This is derived using recent results on the relation between the GLAP and BFKL kernels (including running-coupling effects to all orders) and on small-x factorization schemes. We present the result in various schemes, relevant both for applications to the BFKL equation and to small-x evolution of parton distributions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا