Geometrical approach to Seidels switching for strongly regular graphs


الملخص بالإنكليزية

In this paper, we simplify the known switching theorem due to Bose and Shrikhande as follows. Let $G=(V,E)$ be a primitive strongly regular graph with parameters $(v,k,lambda,mu)$. Let $S(G,H)$ be the graph from $G$ by switching with respect to a nonempty $Hsubset V$. Suppose $v=2(k-theta_1)$ where $theta_1$ is the nontrivial positive eigenvalue of the $(0,1)$ adjacency matrix of $G$. This strongly regular graph is associated with a regular two-graph. Then, $S(G,H)$ is a strongly regular graph with the same parameters if and only if the subgraph induced by $H$ is $k-frac{v-h}{2}$ regular. Moreover, $S(G,H)$ is a strognly regualr graph with the other parameters if and only if the subgraph induced by $H$ is $k-mu$ regular and the size of $H$ is $v/2$. We prove these theorems with the view point of the geometrical theory of the finite set on the Euclidean unit sphere.

تحميل البحث