ﻻ يوجد ملخص باللغة العربية
Analyses of very accurate CoRoT space photometry, past Johnson V photoelectric photometry and high-resolution echelle spectra led to the determination of improved and consistent fundamental stellar properties of both components of AU Mon. We derived new, accurate ephemerides for both the orbital motion (with a period of 11.113d) and the long-term, overall brightness variation (with a period of 416.9d) of this strongly interacting Be + G semi-detached binary. It is shown that this long-term variation must be due to attenuation of the total light by some variable circumbinary material. We derived the binary mass ratio $M_{rm G}/M_{rm B}$ = 0.17p0.03 based on the assumption that the G-type secondary fills its Roche lobe and rotates synchronously. Using this value of the mass ratio as well as the radial velocities of the G-star, we obtained a consistent light curve model and improved estimates of the stellar masses, radii, luminosities and effective temperatures. We demonstrate that the observed lines of the B-type primary may not be of photospheric origin. We also discover rapid and periodic light changes visible in the high-quality residual CoRoT light curves. AU Mon is put into perspective by a comparison with known binaries exhibiting long-term cyclic light changes.
We analyze the CoRoT and V-passband ground-based light curves of the interacting close binary AU Mon, assuming that there is a geometrically and optically thick accretion disk around the hotter and more massive star, as inferred from photometric and
Studies of transiting extrasolar planets are of key importance for understanding the nature of planets outside our solar system because their masses, diameters, and bulk densities can be measured. An important part of transit-search programmes is the
Double Periodic Variables (DPV) are among the new enigmas of semi-detached eclipsing binaries. These are intermediate-mass binaries characterized by a long photometric period lasting on average 33 times the orbital period. We present a spectroscopic
We calculate the flux received from a binary system obscured by a circumbinary disc. The disc is modelled using two dimensional hydrodynamical simulations, and the vertical structure is derived by assuming it is isothermal. The gravitational torque f
OB stars are important constituents for the ecology of the Universe, and there are only a few studies on their pulsational properties detailed enough to provide important feedback on current evolutionary models. Our goal is to analyse and interpret t