ترغب بنشر مسار تعليمي؟ اضغط هنا

Resolving the Stellar Outskirts of M81: Evidence for a Faint, Extended Structural Component

124   0   0.0 ( 0 )
 نشر من قبل Michael Barker
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a wide field census of resolved stellar populations in the northern half of M81, conducted with Suprime-Cam on the 8-m Subaru telescope and covering an area ~ 0.3 square degrees. The resulting color-magnitude diagram reaches over one magnitude below the red giant branch (RGB) tip, allowing a detailed comparison between the young and old stellar spatial distributions. The surface density of stars with ages <~ 100 Myr is correlated with that of neutral hydrogen in a manner similar to the disk-averaged Kennicutt-Schmidt relation. We trace this correlation down to gas densities of ~ 2 x 10^20 cm^{-2}, lower than typically probed with H-alpha flux. Both diffuse light and resolved RGB star counts show compelling evidence for a faint, extended structural component beyond the bright optical disk, with a much flatter surface brightness profile. The star counts allow us to probe this component to significantly fainter levels than is possible with the diffuse light alone. From the colors of its RGB stars, we estimate this component has a peak global metallicity [M/H] ~ -1.1 +/- 0.3 at deprojected radii 32 - 44 kpc assuming an age of 10 Gyr and distance of 3.6 Mpc. The spatial distribution of its RGB stars follows a power-law surface density profile, I(r) ~ r^{-gamma}, with gamma ~ 2. [Abridged]



قيم البحث

اقرأ أيضاً

We report the discovery of an extended globular cluster in a halo field in Centaurus A (NGC 5128), situated $sim 38kpc$ from the centre of that galaxy, imaged with the Advanced Camera for Surveys on board the Hubble Space Telescope. At the distance o f the galaxy, the half-light radius of the cluster is r_h ~ 17pc, placing it among the largest globular clusters known. The faint absolute magnitude of the star cluster, M_(V,o)=-5.2, and its large size render this object somewhat different from the population of extended globular clusters previously reported, making it the first firm detection in the outskirts of a giant galaxy of an analogue of the faint, diffuse globular clusters present in the outer halo of the Milky Way. The colour-magnitude diagram of the cluster, covering approximately the brightest four magnitudes of the red giant branch, is consistent with an ancient, i.e., older than ~8 Gyr, intermediate-metallicity, i.e., [M/H] ~-1.0 dex, stellar population. We also report the detection of a second, even fainter cluster candidate which would have r_h ~ 9pc, and M_(V,o)=-3.4 if it is at the distance of NGC 5128. The properties of the extended globular cluster and the diffuse stellar populations in its close vicinity suggest that they are part of a low mass accretion in the outer regions of NGC 5128.
Many clues about the galaxy assembly process lurk in the faint outer regions of galaxies. The low surface brightnesses of these parts pose a significant challenge for studies of diffuse light, and few robust constraints on galaxy formation models hav e been derived to date from this technique. Our group has pioneered the use of extremely wide-area star counts to quantitatively address the large-scale structure and stellar content of external galaxies at very faint light levels. We highlight here some results from our imaging and spectroscopic surveys of M31 and M33.
We use Hyper Suprime-Cam on the Subaru Telescope to investigate the structural and photometric properties of early-type dwarf galaxies and young stellar systems at the center of the M81 Group. We have mapped resolved stars to $sim2$ magnitudes below the tip of the red giant branch over almost 6.5 square degrees, corresponding to a projected area of $160times160 rm{kpc}$ at the distance of M81. The resulting stellar catalogue enables a homogeneous analysis of the member galaxies with unprecedented sensitivity to low surface brightness emission. The radial profiles of the dwarf galaxies are well-described by Sersic and King profiles, and show no obvious signatures of tidal disruption. The measured radii for most of these systems are larger than the existing literature values and we find the total luminosity of IKN ($rm{M_{V,0}}=-14.29$) to be almost 3 magnitudes brighter than previously-thought. We identify new dwarf satellite candidates, d1006+69 and d1009+68, which we estimate to lie at a distance of $4.3pm0.2$ Mpc and $3.5pm0.5$ Mpc. With $rm{M_{V,0}}=-8.91pm0.40$ and $rm{[M/H]}=-1.83pm0.28$, d1006+69 is one of the faintest and most metal-poor dwarf satellites currently-known in the M81 Group. The luminosity functions of young stellar systems in the outlying tidal HI debris imply continuous star formation in the recent past and the existence of populations as young as 30 Myr old. We find no evidence for old RGB stars coincident with the young MS/cHeB stars which define these objects, supporting the idea that they are genuinely new stellar systems resulting from triggered star formation in gaseous tidal debris.
Massive dwarf galaxies that merge with the Milky Way on prograde orbits can be dragged into the disk plane before being completely disrupted. Such mergers can contribute to an accreted stellar disk and a dark matter disk. We present evidence for Nyx, a vast new stellar stream in the vicinity of the Sun, that may provide the first indication that such an event occurred in the Milky Way. We identify about 500 stars that have coherent radial and prograde motion in this stream using a catalog of accreted stars built by applying deep learning methods to the second Gaia data release. Nyx is concentrated within $pm 2$ kpc of the Galactic midplane and spans the full radial range studied (6.5-9.5 kpc). The kinematics of Nyx stars are distinct from those of both the thin and thick disk. In particular, its rotational speed lags the disk by $sim 80$ km/s and its stars follow more eccentric orbits. A small number of Nyx stars have chemical abundances or inferred ages; from these, we deduce that Nyx stars have a peak metallicity of [Fe/H] $sim -0.5$ and ages $sim $10-13 Gyr. Taken together with the kinematic observations, these results strongly favor the interpretation that Nyx is the remnant of a disrupted dwarf galaxy. To further justify this interpretation, we explicitly demonstrate that metal-rich, prograde streams like Nyx can be found in the disk plane of Milky Way-like galaxies using the FIRE hydrodynamic simulations. Future spectroscopic studies will be able to validate whether Nyx stars originate from a single progenitor.
107 - Yuta Tarumi , Naoki Yoshida , 2021
Ultra-faint dwarf galaxies (UFDs) are promising observable proxies to building blocks of galaxies formed in the early Universe. We study the formation and evolution of UFDs using cosmological hydrodynamic simulations. In particular, we show that a ma jor merger of two building block galaxies with 3,900 Msun and 7,500 Msun at the cosmic age of 510 Myr results in a system with an extended stellar distribution consistent with the de Vaucouleurs profile. The simulated galaxy has an average stellar metallicity of [Fe/H]=-2.7 and features a metallicity gradient. These results closely resemble the properties of a recently discovered UFD, Tucana II, which is extremely metal-poor and has a spatially extended stellar halo with the more distant stars being more metal-poor. Our simulation suggests that the extended stellar halo of Tucana II may have been formed through a past major merger. Future observational searches for spatially extended structures around other UFDs, combined with further theoretical studies, will provide tangible measures of the evolutionary history of the ancient, surviving satellite galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا