ﻻ يوجد ملخص باللغة العربية
The absolute luminosity of the Fe Kalpha emission line from matter illuminated by X-rays in astrophysical sources is nontrivial to calculate except when the line-emitting medium is optically-thin to absorption and scattering. We characterize the Fe Kalpha line flux using a dimensionless efficiency, defined as the fraction of continuum photons above the Fe K shell absorption edge threshold energy that appear in the line. The optically-thin approximation begins to break down even for column densities as small as 2 x 10^22 cm^-2. We show how to obtain reliable estimates of the Fe Kalpha line efficiency in the case of cold, neutral matter, even for the Compton-thick regime. We find that, regardless of geometry and covering factor, the largest Fe Kalpha line efficiency is attained well before the medium becomes Compton-thick. For cosmic elemental abundances it is difficult to achieve an efficiency higher than a few percent under the most favorable conditions and lines of sight. For a given geometry, Compton-thick lines-of-sight may have Fe Kalpha line efficiencies that are orders of magnitude less than the maximum possible for that geometry. Configurations that allow unobscured views of a Compton-thick reflecting surface are capable of yielding the highest efficiencies. Our results can be used to estimate the predicted flux of the narrow Fe Kalpha line at ~6.4 keV from absorption models in AGN. In particular we show that contrary to a recent claim in the literature, absorption dominated models for the relativistic Fe Kalpha emission line in MCG -6-30-15 do not over-predict the narrow Fe Kalpha line for any column density or covering factor.
We present new, high signal-to-noise ratio results from a Monte Carlo study of the properties of the Compton shoulder of the Fe Kalpha emission line in the toroidal X-ray reprocessor model of Murphy & Yaqoob (2009, MNRAS, 397, 1549). The model compre
We report on a detailed study of the Fe K emission/absorption complex in the nearby, bright Seyfert 1 galaxy Mrk 509. The study is part of an extensive XMM-Newton monitoring consisting of 10 pointings (~60 ks each) about once every four days, and inc
The Fe Kalpha emission line is the most ubiquitous feature in the X-ray spectra of active galactic nuclei (AGN), but the origin of its narrow core remains uncertain. Here, we investigate the connection between the sizes of the Fe core emission region
The Fe-K line, an important physical diagnostic in the X-ray spectra of AGN, has been notoriously difficult to measure in the high-luminosity, radio-loud quasar 3C 273 (z=0.158). On the few occasions that it has been detected its intrinsic width has
The recent detection of X-ray reverberation lags, especially in the Fe Kalpha line region, around Active Galactic Nuclei (AGN) has opened up the possibility of studying the time-resolved response (reflection) of hard X-rays from the accretion disk ar