ﻻ يوجد ملخص باللغة العربية
We investigate the Tolman-Oppenheimer-Volkoff equations for the generalized Chaplygin gas with the aim of extending the findings of V. Gorini, U. Moschella, A. Y. Kamenshchik, V. Pasquier, and A. A. Starobinsky [Phys. Rev. D {bf 78}, 064064 (2008)]. We study both the standard case, where we reproduce some previous results, and the phantom case. In the phantom case we show that even a superluminal group velocity arising for $alpha > 1$ cannot prevent the divergence of the pressure at a finite radial distance. Finally, we investigate how a modification of the generalized Chaplygin gas equation of state, required by causality arguments at densities very close to $Lambda$, affects the results found so far.
We investigate the existence of analytic solutions for the field equations in the Einstein-ae ther theory for a static spherically symmetric spacetime and provide a detailed dynamical system analysis of the field equations. In particular, we investig
The cosmological observations suggest that the presently accelerating universe should be filled by an exotic form of matter, violating the strong energy condition, of unknown nature and origin. We propose the viscous dark matter of a source of accele
We present a simple generalisation of the $Lambda$CDM model which on the one hand reaches very good agreement with the present day experimental data and provides an internal inflationary mechanism on the other hand. It is based on Palatini modified g
Unification of dark matter and dark energy as short- and long-range manifestations of a single cosmological substance is possible in models described by the generalized Chaplygin gas equation of state. We show it admits halo-like structures and discu
In this paper, we reexamine the generalized Chaplygin gas (GCG) cosmology with the sign-changeable interaction. The dynamical analysis show that there exists de-Sitter attractors in this model, which means that the late-time behaviors of the model is