ترغب بنشر مسار تعليمي؟ اضغط هنا

The Coevality of Young Binary Systems

109   0   0.0 ( 0 )
 نشر من قبل Adam Kraus
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Multiple star systems are commonly assumed to form coevally; they thus provide the anchor for most calibrations of stellar evolutionary models. In this paper we study the binary population of the Taurus-Auriga association, using the component positions in an HR diagram in order to quantify the frequency and degree of coevality in young binary systems. After identifying and rejecting the systems that are known to be affected by systematic errors (due to further multiplicity or obscuration by circumstellar material), we find that the relative binary ages, |Delta log(tau)|, have an overall dispersion of sigma~0.40 dex. Random pairs of Taurus members are coeval only to within sigma~0.58 dex, indicating that Taurus binaries are indeed more coeval than the association as a whole. However, the distribution of |Delta log(tau)| suggests two populations, with ~2/3 of the sample appearing coeval to within the errors (sigma~0.16 dex) and the other ~1/3 distributed in an extended tail reaching |Delta log(tau)|~0.4-0.9 dex. To explain the finding of a multi-peaked distribution, we suggest that the tail of the differential age distribution includes unrecognized hierarchical multiples, stars seen in scattered light, or stars with disk contamination; additional followup is required to rule out or correct for these explanations. The relative coevality of binary systems does not depend significantly on the system mass, mass ratio, or separation. Indeed, any pair of Taurus members wider than ~10 (~0.7 pc) shows the full age spread of the association.



قيم البحث

اقرأ أيضاً

83 - M. Simon , J. Toraskar 2017
The ages of the components in very short period pre-main sequence (PMS) binaries are essential to an understanding of their formation. We considered a sample of 7 PMS eclipsing binaries (EBs) with ages 1 to 6.3 MY and component masses 0.2 to 1.4 Msun The very high precision with which their masses and radii have been measured, and the capability provided by the {it Modules for Experiments in Stellar Astrophysics (MESA)} to calculate their evolutionary tracks at exactly the measured masses, allows the determination of age differences of the components independent of their luminosities and effective temperatures. We found that the components of 5 EBs, ASAS J052821+0338.5, Parenago 1802, JW 380, CoRoT 223992193, and UScoCTIO 5, formed within 0.3 MY of each other. The parameters for the components of V1174 Ori, imply an implausible large age difference of 2.7 MY and should be reconsidered. The 7th EB in our sample, RX J0529.4+0041 fell outside the applicability of our analysis.
Star formation occurs via fragmentation of molecular clouds, which means that the majority of stars born are a members of binaries. There is growing evidence that planets might form in circumprimary disks of medium-separation binaries. The tidal forc es caused by the secondary generally act to distort the originally circular disk to an eccentric one. To infer the disk eccentricity from high-res NIR spectroscopy, we calculate the fundamental band emission lines of the CO molecule emerging from the atmosphere of the disk. We model circumprimary disk evolution under the gravitational perturbation of the orbiting secondary using a 2D grid-based hydrodynamical code, assuming alpha-type viscosity. The hydrodynamical results are combined with our spectral code based on the double-layer disk model to calculate the CO molecular line profiles. We find that the orbital velocity distribution of the gas parcels differs significantly from the circular Keplerian fashion, thus the line profiles are asymmetric in shape. The magnitude of asymmetry is insensitive to the binary mass ratio, the magnitude of viscosity, and the disk mass. In contrast, the disk eccentricity, thus the level of the line profile asymmetry, is influenced significantly by the binary eccentricity and the disk geometrical thickness. We demonstrate that the disk eccentricity profile in the planet-forming region can be determined by fitting the high-resolution CO line profile asymmetry using a simple 2D spectral model that accounts for the velocity distortions caused by the disk eccentricity. Thus, with our novel approach the disk eccentricity can be inferred with high-resolution near-IR spectroscopy prior to the era of high angular resolution optical or radio direct-imaging. By determining the disk eccentricity in medium-separation young binaries, we might be able to constrain the planet formation theories.
Abridged: We report the discovery of two, new, rare, wide, double-degenerate binaries that each contain a magnetic and a non-magnetic star. The components of SDSSJ092646.88+132134.5 + J092647.00+132138.4 and SDSSJ150746.48+521002.1 + J150746.80+52095 8.0 have angular separations of only 4.6 arcsec (a~650AU) and 5.1 arcsec (a~750AU), respectively. They also appear to share common proper motions. Follow-up optical spectroscopy reveals each system to consist of a DA and a H-rich high-field magnetic white dwarf (HFMWD). Our measurements of the effective temperatures and the surface gravities of the DA components reveal both to have larger masses than are typical of field white dwarfs. By assuming that these degenerates have evolved essentially as single stars, due to their wide orbital separations, we use them to place limits on the total ages of our stellar systems. These argue that in each case the HFMWD is probably associated with an early type progenitor (M_init > 2M_solar). We find that the cooling time of SDSSJ150746.80+520958.0 (DAH) is somewhat lower than might be expected had it followed the evolutionary path of a typical single star. This mild discord is in the same sense as that observed for two of the small number of other HFMWDs for which progenitor mass estimates have been made, REJ0317-853 and EG59. The mass of the other DAH, SDSSJ092646.88+132134.5, appears to be smaller than expected on the basis of single star evolution. If this object was/is a member of a hierarchical triple system it may have experienced greater mass loss during an earlier phase of its life as a result of it having a close companion. The large uncertainties on our estimates of the parameters of the HFMWDs suggest a larger sample of these objects is required to firmly identify any trends in their inferred cooling times and progenitor masses.
Parenago 1802, a member of the ~1 Myr Orion Nebula Cluster, is a double-lined, detached eclipsing binary in a 4.674 d orbit, with equal-mass components (M_2/M_1 = 0.985 pm 0.029). Here we present extensive VIcJHKs light curves spanning ~15 yr, as wel l as a Keck/HIRES optical spectrum. The light curves evince a third light source that is variable with a period of 0.73 d, and is also manifested in the high-resolution spectrum, strongly indicating the presence of a third star in the system, probably a rapidly rotating classical T Tauri star. We incorporate this third light into our radial velocity and light curve modeling of the eclipsing pair, measuring accurate masses (M_1 = 0.391 pm 0.032, M_2 = 0.385 pm 0.032 Modot), radii (R_1 = 1.73 pm 0.02, R_2 = 1.62 pm 0.02 Rodot), and temperature ratio (T_1/T_2 = 1.0924 pm 0.0017). Thus the radii of the eclipsing stars differ by 6.9 pm 0.8%, the temperatures differ by 9.2 pm 0.2%, and consequently the luminosities differ by 62 pm 3%, despite having masses equal to within 3%. This could be indicative of an age difference of ~3x10^5 yr between the two eclipsing stars, perhaps a vestige of the binary formation history. We find that the eclipsing pair is in an orbit that has not yet fully circularized, e = 0.0166 pm 0.003. In addition, we measure the rotation rate of the eclipsing stars to be 4.629 pm 0.006 d; they rotate slightly faster than their 4.674 d orbit. The non-zero eccentricity and super-synchronous rotation suggest that the eclipsing pair should be tidally interacting, so we calculate the tidal history of the system according to different tidal evolution theories. We find that tidal heating effects can explain the observed luminosity difference of the eclipsing pair, providing an alternative to the previously suggested age difference.
Precise determination of dynamical masses of pre-main-sequence (PMS) stars is essential to calibrate stellar evolution models that are widely used to derive theoretical masses of young low-mass objects. Binary stars in young, nearby loose association s are particularly good candidates for this calibration since all members share a common age. Interestingly, some of these young binaries present a persistent and compact radio emission, which makes them excellent targets for astrometric VLBI studies. We aim to monitor the orbital motion of the binary system HD 160934, a member of the AB Doradus moving group. We observed HD 160934 with the Very Large Array and the European VLBI Network at 8.4 and 5 GHz, respectively. The orbital information derived from these observations was analyzed along with previously reported orbital measurements. We show that the two components of the binary, HD 160934 A and HD 160934 c, display compact radio emission at VLBI scales, providing precise information on the relative orbit. Revised orbital elements were estimated. Future VLBI monitoring of this pair should determine precise model-independent mass estimates for the A and c components, which will serve as calibration tests for PMS evolutionary models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا